精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|xex|-t有三个零点,则实数t的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,1)C.($\frac{1}{e}$,1)D.(0,$\frac{1}{e}$]

分析 令f(x)=0,即为方程|xex|=t有三个不相等的实数解,即y=t与函数y=|xex|的图象有三个交点,利用导数法分析g(x)=xex的单调性和极值,进而结合函数图象的对折变换画出函数y=|xex|的图象,数形结合可得答案.

解答 解:令f(x)=0,即为|xex|=t,
令g(x)=xex,则g′(x)=(1+x)ex
当x<-1时,g′(x)<0,当x>-1时,g′(x)>0,
故g(x)=xex在(-∞,-1)上为减函数,在(-1,+∞)上是减函数,
g(-1)=-$\frac{1}{e}$,
又由x<0时,g(x)<0,当x>0时,g(x)>0,
故函数y=|xex|的图象如下图所示:

故当t∈(0,$\frac{1}{e}$)时,y=t与函数y=|xex|的图象有三个交点,
即方程|xex|=t有三个不相等的实数解,
故t的取值范围是(0,$\frac{1}{e}$),
故选:A.

点评 本题考查的知识点是零点的存在性及零点的个数,其中结合函数图象的对折变换画出函数y=|xex|的图象,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.幂函数f(x)=(m2-m-1)x-m在x∈(0,+∞)时为减函数,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设数列{an}满足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超过x的最大整数,则$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中用分层抽样的方法抽取50名同学(男30,女20),给所选的同学几何题和代数题各一题,让各位同学自由选择一题进行解答,选题情况如表(单位:人)
几何体代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97%的把握认为视觉和空间能力与性别有关
(2)经过多次测试后,甲每次解答一道几何题所用的时间在5-7分钟,乙每次解答一道几何题所用的时间在6-8分钟,现甲乙解同一道几何题,求乙比甲先解答完成的概率
(3)现从选择做几何题的8名女生中任意抽取两人对她们的大题情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列及数学期E(X)
附表及公式
P(k2≥k00.150.100.050.0250.100.0050.001
k02.0722.7063.4815.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C与双曲线$\frac{x^2}{4}-{y^2}=1$有共同的渐近线,且一个焦点与抛物线x2=20y的焦点重合,则双曲线C的标准方程为$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{20}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{a}$=(1,cosα),$\overrightarrow{b}$=(sinα,1),0<α<π,若$\vec a⊥\vec b$,则α=(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AB=BC=BB1,AB1∩A1B=E,D为AC上的点,B1C∥平面A1BD.
(1)求证:BD⊥平面A1ACC1
(2)若AB=1,且AC•AD=1,求二面角B-A1D-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x-alnx,(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)设g(x)=-$\frac{a+1}{x}$,若不等式f(x)>g(x)对任意x∈[1,e)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2xlnx-(x-a)2
(1)若f(x)在定义域上为单调递减函数,求函数a的取值范围;
(2)是否存在实数a,使得f(x)≤0恒成立且f(x)有唯一零点,若存在,求出满足a∈(n,n+1),n∈Z的n的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案