精英家教网 > 高中数学 > 题目详情
9.已知双曲线C与双曲线$\frac{x^2}{4}-{y^2}=1$有共同的渐近线,且一个焦点与抛物线x2=20y的焦点重合,则双曲线C的标准方程为$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{20}=1$.

分析 设出双曲线方程,利用抛物线的焦点坐标,求解双曲线方程.

解答 解:双曲线C与双曲线$\frac{x^2}{4}-{y^2}=1$有共同的渐近线,可设双曲线C为:$\frac{{x}^{2}}{4}-{y}^{2}=m$,
抛物线x2=20y的焦点(0,5),则:-4m-m=25.解得m=-5.
所求双曲线方程为:$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{20}=1$.
故答案为:$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{20}=1$.

点评 本题考查双曲线的简单性质的应用,抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若数列{an}的前n项和Sn=n2-10n(n=1,2,3,…),
(1)求a1,a2的值;
(2)求此数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=x2-2xsin$\frac{π}{2}$x+1的两个零点分别为a,b,则a+b=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以原点为圆心,椭圆C的短半轴长为半径的圆与直线 x+y+$\sqrt{2}$=0相切.A、B是椭圆的左右顶点,直线l 过B点且与x轴垂直,如图.
(I)求椭圆C的方程;
(II)若过点M(1,0)的直线与椭圆C相交于P,Q两点,如果-$\frac{3}{5}$≤$\overrightarrow{OP}$•$\overrightarrow{OQ}$≤-$\frac{2}{9}$(O为坐标原点),且满足|$\overrightarrow{PM}$|+|$\overrightarrow{MQ}$|=t$\overrightarrow{PM}$•$\overrightarrow{MQ}$,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.18B.21C.24D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=|xex|-t有三个零点,则实数t的取值范围为(  )
A.(0,$\frac{1}{e}$)B.(0,1)C.($\frac{1}{e}$,1)D.(0,$\frac{1}{e}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,${a_1}=-1,{a_{n+1}}=2{a_n}+3n-1({n∈{N^*}})$,则其前n项和Sn=2n+2-4-$\frac{3{n}^{2}+7n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若不等式|x-2|+|x-3|>|k-1|对任意的x∈R恒成立,则实数k的取值范围是(  )
A.[2,4]B.[0,2]C.(2,4)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-a|+|x-2|,x∈R
(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;
(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求$\frac{3}{m}$+$\frac{2}{n}$+$\frac{1}{p}$的最小值.

查看答案和解析>>

同步练习册答案