精英家教网 > 高中数学 > 题目详情
19.若数列{an}的前n项和Sn=n2-10n(n=1,2,3,…),
(1)求a1,a2的值;
(2)求此数列的通项公式.

分析 (1)分别令n=1,n=2即可求出答案,
(2)由题意可得:当n≥2时,an=Sn-Sn-1=2n-11.当n=1时,a1=S1=-9,也符合an=2n-11,进而求出数列的通项公式.

解答 解:(1)a1=S1=12-10=-9,a2=S2-S1=22-20+9=-7;
(2)由题意可得:当n≥2时,Sn-1=(n-1)2-10(n-1)=n2-12n+11,
所以an=Sn-Sn-1=2n-11.
当n=1时,a1=S1=-9,也符合an=2n-11,
所以数列的通项公式为:an=2n-11.

点评 解决此类问题的关键是熟练掌握数列通项公式的方法,以及结合正确的运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设复数z满足z(1+i)=i(i为虚数单位),则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$|{\overrightarrow{e_1}}|=|{\overrightarrow{e_2}}|=1$,$cos<\overrightarrow{e_1},\overrightarrow{e_2}>=-\frac{1}{5}$,且$\overrightarrow a=2\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_1}+3\overrightarrow{e_2}$,则$\overrightarrow a•\overrightarrow b$=(  )
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将函数f(x)=sin2x的图象向右平移φ$({0<φ<\frac{π}{2}})$个单位后得到函数g(x)的图象,若g(x)在区间$[{0,\frac{π}{6}}]$上单调递增,且函数g(x)的最大负零点在区间$({-\frac{π}{3},-\frac{π}{6}})$上,则φ的取值范围是(  )
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{6}$,$\frac{5π}{12}$)C.[$\frac{π}{6}$,$\frac{π}{3}$]D.($\frac{π}{6}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在命题p的四种形式(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f(p).已知命题p:“若x2-3x+2<0,则1<x<2”.那么f(p)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.幂函数f(x)=(m2-m-1)x-m在x∈(0,+∞)时为减函数,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知n∈N*,数列{dn}满足${d_n}=\frac{{3+{{({-1})}^n}}}{2}$,数列{an}满足an=d1+d2+d3+…+d2n;又在数列{bn}中b1=2,且对?m,n∈N*,$b_n^m=b_m^n$.
( I)求数列{an}和{bn}的通项公式;
( II)将数列{bn}中的第a1项、第a2项、第a3项、…、第an项删去后,剩余的项按从小到大的顺序排列成新的数列{cn},求数列{cn}的前2016项的和T2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)=\frac{{{2^x}-1}}{{{2^x}+1}}+x+sinx$,若正实数a,b满足f(4a)+f(b-9)=0,则$\frac{1}{a}+\frac{1}{b}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线C与双曲线$\frac{x^2}{4}-{y^2}=1$有共同的渐近线,且一个焦点与抛物线x2=20y的焦点重合,则双曲线C的标准方程为$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{20}=1$.

查看答案和解析>>

同步练习册答案