精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,已知|
AB
|=4,|
AC
|=2,
AD
=
1
3
AB
+
2
3
AC

(1)证明:B,C,D三点共线;           (2)若|
AD
|=
6
,求|
BC
|
的值.
分析:(1)本题考查的知识点是向量共线定理,由
AD
=
1
3
AB
+
2
3
AC
,得
BD
=
3
3
CB
BD
CB
有公共点B,于是B,C,D三点共线;
(2)由
AD
=
1
3
AB
+
2
3
AC
,平方得求得向量的数量积
AB
AC
=
11
2
.从而得到cos∠BAC,最后由余弦定理得|
BC
|
的值.
解答:解:(1)当
AD
=
1
3
AB
+
2
3
AC
时,
AD
-
AB
= -
2
3
AB
+
2
3
AC

BD
=
3
3
CB
BD
CB
有公共点B,
于是B,C,D三点共线;
(2)由
AD
=
1
3
AB
+
2
3
AC
,平方得:
AD
 2=
1
9
AB
 2+
4
9
AC
 2+
4
9
AB
AC

从而有:6=
16
9
+
16
9
+
4
9
AB
AC

AB
AC
=
11
2

∴4×2×cos∠BAC=
11
2

cos∠BAC=
11
16

由余弦定理得:|
BC
| 2
=16+4-2×4×2×cos∠BAC=9
|
BC
|
的值为3.
点评:若A、B、P三点共线,O为直线外一点,则
OP
OA
OB
,且λ+μ=1,反之也成立,这是三点共线在向量中最常用的证明方法和性质,大家一定要熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案