精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA,AC、CB、BP的中点.

(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.
(1)只需证DG//EF; (2)只需证AB⊥面POC;(3)

试题分析:(1)依题意DG//AB……1分,
EF∥AB…2分,
所以DG//EF……3分,
DG、EF共面,从而D、E、F、G四点共面……4分。
(2)取AB中点为O,连接PO、CO……5分
因为PA=PB, CA=CB,所以PO⊥AB,CO⊥AB……7分,
因为PO∩CO=D,所以AB⊥面POC……8分
PC面POC,所以AB⊥PC……9分
(3)因为△ABC和PAB是等腰直角三角形,所以…10分,
因为所以OP⊥OC……11分,
又PO⊥AB,且AB∩OC=O,所以PO⊥面ABC……12分
……14分(公式1分,其他1分)
点评:第三问,把三棱锥P-ABC体积的求法转化为求棱锥A-POB和棱锥B-POC的体积之和是解决问题的关键。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图,棱锥的底面是矩形,⊥平面

(1)求证:⊥平面
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在三棱柱中,侧棱,点的中点,
(1)求证:∥平面
(2)为棱的中点,试证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,几何体是四棱锥,△为正三角形,.
(1)求证:
(2)若∠,M为线段AE的中点,求证:∥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知两个平面垂直,下列命题中:
(1)一个平面内已知直线必垂直于另一个平面内的任意一条直线;
(2)一个平面内已知直线必垂直于另一个平面内的无数条直线;
(3)一个平面内的任意一条直线必垂直于另一个平面;
(4)过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面.
其中正确命题的个数有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,所成角均为,且,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线和平面, 则下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为两个不同的平面,为三条互不相同的直线,
给出下列四个命题:
①若,则
②若,则
③若,则
④若是异面直线,,则
其中真命题的序号是(   )
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

同步练习册答案