精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:

 

据此,可推断抛物线的方程为_____________.

 

【解析】:

试题分析:由题意可知:点是椭圆的短轴的一个端点,或点是椭圆的长轴的一个端点.以下分两种情况讨论:①假设点是椭圆的短轴的一个端点,则可以写成经验证可得:若点上,代入求得,即,剩下的4个点中也在此椭圆上.假设抛物线的方程为,把点代入求得p=2,∴,则只剩下一个点既不在椭圆上,也不在抛物线上满足条件.假设抛物线的方程为y2=-2px,经验证不符合题意.②假设点是椭圆的长轴的一个端点,则可以写成,经验证不满足条件,应舍去.综上可知:可推断椭圆的方程为

考点:椭圆、抛物线的标准方程及其性质和分类讨论的思想方法是解题的关键.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届福建省高二下学期期末考理科数学试卷(解析版) 题型:解答题

甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:

尺寸

甲零件频数

2

3

20

20

4

1

乙零件频数

3

5

17

13

8

4

 

(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元.若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;

(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.

参考公式:.

参考数据:

0.25

0.15

0.10

0.05

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

 

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省高二下学期期中考理科数学试卷(解析版) 题型:选择题

复数在复平面上对应的点位于

A.第一象限 B.第二象限 C.第三象限 D.第四象限

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省高二上学期期末考理科数学试卷(解析版) 题型:选择题

是函数的导函数,的图象如图所示,则的图象最有可能的是

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题

已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为

(Ⅰ)求椭圆的方程;

(Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省高二上学期期中考试理科数学试卷(解析版) 题型:选择题

在同一坐标系中,方程的曲线大致是

 

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省高二上学期期中考试理科数学试卷(解析版) 题型:选择题

以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)

已知甲组数据的中位数为5,乙组数据的平均数为6.8,则的值分别为

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省晋江市高二下学期期末理科数学试卷(解析版) 题型:选择题

在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( )

A.10 B.11 C.12 D.15

 

查看答案和解析>>

科目:高中数学 来源:2015届福建省等三校高二下学期期末理科数学试卷(解析版) 题型:填空题

将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中,则1号盒子中有球的不同放法种数为______________.

 

查看答案和解析>>

同步练习册答案