精英家教网 > 高中数学 > 题目详情
8.在等差数列{an}中a3=8,a5=14,则S7=77.

分析 求出等差数列的公差与首项,然后求解S7即可.

解答 解:等差数列{an}中a3=8,a5=14,可得d=3,则a1=2,
S7=$2×7+\frac{7×6}{2}×3$=77.
故答案为:77.

点评 本题考查等差数列的通项公式以及前n项和的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.将图中被遮挡部分按要求改成虚线,使图形具有立体感.
(1)图(1)中AB被平面α遮挡.
(2)图(2)中AB不被平面α遮挡.
(3)正方体ABCD一A1B1C1D1中,CD被遮挡.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=${{(x}^{2}-2x)}^{-\frac{1}{2}}$的定义域是(  )
A.{x≠0或≠2}B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知U={三角形},A={锐角三角形},B={钝角三角形},则∁UA∩B=(  )
A.{锐角三角形}B.{钝角三角形}C.{直角三角形}D.{三角形}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设U={1,2,3,4,5,6,7},A={1,2,3,6,7},则∁UA={4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.比较下列各组数中两个值的大小:
(1)0.2-1.5和0.2-1.7
(2)($\frac{1}{4}$)${\;}^{\frac{1}{3}}$和($\frac{1}{4}$)${\;}^{\frac{2}{3}}$;
(3)2-1.5和30.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x)=ax+a-x,g(x)=ax-a-x,a>0,设g(x)•g(y)=6,f(x)•f(y)=12,求$\frac{f(x-y)}{f(x+y)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\frac{x+1}{2x+1}$的值域是{x|x$≠\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简(式中字母均为正数):
(1)a${\;}^{\frac{1}{3}}$a${\;}^{\frac{3}{4}}$a${\;}^{\frac{7}{12}}$;
(2)(x${\;}^{\sqrt{3}}$y${\;}^{-\frac{\sqrt{3}}{4}}$)${\;}^{\frac{1}{\sqrt{3}}}$;
(3)4x${\;}^{\frac{1}{\sqrt{2}}}$(-3x${\;}^{-\frac{1}{\sqrt{2}}}$y2);
(4)($\frac{16{s}^{2}{t}^{-6}}{25{r}^{4}}$)${\;}^{-\frac{3}{2}}$.

查看答案和解析>>

同步练习册答案