精英家教网 > 高中数学 > 题目详情

在圆上任取一点,设点轴上的正投影为点.当点在圆上运动时,动点满足,动点形成的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,若是曲线上的两个动点,且满足,求的取值范围.

(1);(2).

解析试题分析:(1)解法一是从条件得到点为线段的中点,设点,从而得到点的坐标为,利用点在圆上,其坐标满足圆的方程,代入化简得到曲线的方程;解法二是利用相关点法,设点,点,通过条件确定点与点的坐标之间的关系,并利用点的坐标表示点的坐标,再借助点在圆上,其坐标满足圆的方程,代入化简得到曲线的方程;(2)先利用条件化简为,并设点,从而得到的坐标表达式,结合点,将的代数式化为以的二次函数,结合的取值范围,求出的取值范围.
试题解析:(1)解法1:由知点为线段的中点.
设点的坐标是,则点的坐标是.
因为点在圆上,所以.
所以曲线的方程为
解法2:设点的坐标是,点的坐标是
得,
因为点在圆上, 所以.     ①
代入方程①,得
所以曲线的方程为
(2)解:因为,所以
所以
设点,则,即
所以
因为点在曲线上,所以
所以
所以的取值范围为.
考点:1.相关点法求轨迹方程;2.平面向量的数量积;3.二次函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ)判断函数的奇偶性;
(Ⅲ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数定义域和函数图像所过的定点;
(2)若已知时,函数最大值为2,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)求的值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

运货卡车以每小时x千米的匀速行驶130千米,按交通法规限制50≤x≤100(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油()升,司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定制定生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.
,请你分析能否采用函数模型y=作为生态环境改造投资方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)若函数为奇函数,求实数的值;
(II)若对任意的,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数交于两点且,奇函数,当时,都在取到最小值.
(1)求的解析式;
(2)若图象恰有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)设的定义域为A,求集合A;
(2)判断函数在(1,+)上单调性,并用单调性的定义加以证明.

查看答案和解析>>

同步练习册答案