精英家教网 > 高中数学 > 题目详情

已知二次函数交于两点且,奇函数,当时,都在取到最小值.
(1)求的解析式;
(2)若图象恰有两个不同的交点,求实数的取值范围.

(1);(2)

解析试题分析:(1)由已知是奇函数,故,从而得,所以,又当时,取到最小值,由均值不等式等号成立的条件可得,即.再由已知及弦长公式,得,解方程组便得的值,从而得函数的解析式;(2)由已知,,即有两个不等的实根,将问题转化为方程有两个不等的实根,即一元二次方程根的分布问题,列不等式组解决问题.
试题解析:(1)因为是奇函数,由,所以,由于时,有最小值,所以,则,当且仅当:取到最小值,所以,即
,则.由得:,所以:,解得:,所以        6分
(2)因为,即有两个不等的实根,也即方程有两个不等的实根.
时,有,解得;当时,有,无解.
综上所述,.                                13分
考点:1.函数的最值;2.函数的奇偶性;3.弦长公式;4.一元二次方程根的分布问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知实数,函数.
(1)当时,求的最小值;
(2)当时,判断的单调性,并说明理由;
(3)求实数的范围,使得对于区间上的任意三个实数,都存在以为边长的三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在圆上任取一点,设点轴上的正投影为点.当点在圆上运动时,动点满足,动点形成的轨迹为曲线.
(1)求曲线的方程;
(2)已知点,若是曲线上的两个动点,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数是否符合这个要求,并说明原因;
(2)若该公司采用函数作为奖励函数模型,试确定最小的正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若函数)在上的最大值为23,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴判断函数的单调性,并证明;
⑵求函数的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,恒过定点
(1)求实数
(2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,
(Ⅰ)求表达式;
(Ⅱ)若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ)试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

查看答案和解析>>

同步练习册答案