精英家教网 > 高中数学 > 题目详情
如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB中点。
(1)求证:
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。
4,平面AEB1
解:  (1)证明:三棱柱ABC—A1B1C1是直棱柱,
平面ABC   1分
平面ABC,    2分
    3分
(2)解:三棱柱ABC—A1B1C1是直棱柱,
平面ABC,
平面ABC




平面ECBB1    6分
    7分
是棱CC1的中点,

 
    8分
  (3)解:CF//平面AEB1,证明如下:
取AB1的中点G,联结EG,FG
分别是棱AB、AB1中点



四边形FGEC是平行四边形                       
平面AEB,平面AEB1
平面AEB1。12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题14分)
如图,在直三棱柱中,,点在边上,
(1)求证:平面
(2)如果点的中点,求证:平面 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,点P在正方形ABCD所在的平面外,PD⊥面ABCD,∠PAD=45°,空间一点E在平面ABCD上的射影是点B,且PB⊥面AEC.

(1)求直线AD与平面AEC所成的角的正切值;
(2)若F是AP的中点,求直线BF与CE所成角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱的各棱长都为为棱上的动点.

(Ⅰ)当时,求证:
(Ⅱ)若,求二面角的大小;              
(Ⅲ)在(Ⅱ)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在空间,到定点的距离为定长的点的集合称为球面.定点叫做球心,定长叫做球面的半径.平面内,以点为圆心,以为半径的圆的方程为,类似的在空间以点为球心,以为半径的球面方程为                                            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


是两条不同的直线,是一个平面,则下列命题正确的是
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,在正方体ABCDA1B1C1D1中,MN分别是棱ABCC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,
有以下四个命题:
A.平面MB1PND1
B.平面MB1P⊥平面ND1A1
C.△MB1P在底面ABCD上的射影图形的面积为定值;
D.△MB1P在侧面D1C1CD上的射影图形是三角形.
其中正确命题的序号是__________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体上任意选择4个顶点,由这4个顶点可能构成如下几何体:
①有三个面为全等的等腰直角三角形,有一个面为等边三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是直角三角形的四面体;
④有三个面为不全等的直角三角形,有一个面为等边三角形的四面体。
以上结论其中正确的是              (写出所有正确结论的编号)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥中,,,,,若四点在同一个球面上,则在球面上两点之间的球面距离是_____ .

查看答案和解析>>

同步练习册答案