分析 (Ⅰ)直线l:$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.
(Ⅱ)把$l:\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$代入椭圆方程中,整理得$3{t^2}+10\sqrt{2}t+14=0$,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.
解答 解:(Ⅰ)直线l:$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数),消去参数t可得普通方程:l:x-y+1=0.
曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,
可得直角坐标方程:x2+y2+y2=2,
即$C:\frac{x^2}{2}+{y^2}=1$.
(Ⅱ)把$l:\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$代入$\frac{x^2}{2}+{y^2}=1$中,
整理得$3{t^2}+10\sqrt{2}t+14=0$,
设A,B对应的参数分别为t1,t2,
∴${t_{\;1}}•{t_{\;2}}=\frac{14}{3}$,
由t得几何意义可知,$|MA||MB|=|{t_{\;1}}•{t_{\;2}}|=\frac{14}{3}$.
点评 本题考查了极坐标与直角坐标方程的互化、直线方参数方程的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}}$) | B. | (0,$\frac{1}{2e}}$) | C. | ($\frac{1}{e}$,+∞) | D. | (${\frac{1}{2e}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com