精英家教网 > 高中数学 > 题目详情
17.在直角坐标系xOy中,已知直线l:$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.
(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.

分析 (Ⅰ)直线l:$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.
(Ⅱ)把$l:\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$代入椭圆方程中,整理得$3{t^2}+10\sqrt{2}t+14=0$,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.

解答 解:(Ⅰ)直线l:$\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数),消去参数t可得普通方程:l:x-y+1=0.
曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,
可得直角坐标方程:x2+y2+y2=2,
即$C:\frac{x^2}{2}+{y^2}=1$.
(Ⅱ)把$l:\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$代入$\frac{x^2}{2}+{y^2}=1$中,
整理得$3{t^2}+10\sqrt{2}t+14=0$,
设A,B对应的参数分别为t1,t2
∴${t_{\;1}}•{t_{\;2}}=\frac{14}{3}$,
由t得几何意义可知,$|MA||MB|=|{t_{\;1}}•{t_{\;2}}|=\frac{14}{3}$.

点评 本题考查了极坐标与直角坐标方程的互化、直线方参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(Ⅰ)求证:CE2=CD•CB.
(Ⅱ)若D为BC的中点,且BC=2$\sqrt{2}$,求AB与DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线kx-y-k+1=0与圆x2+y2=4的位置关系是(  )
A.相交B.相切C.相离D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在极坐标系中,点(2,$\frac{π}{6}$)到直线ρsinθ=3的距离等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线f(x)=ax2(a>0)与g(x)=lnx有两条公切线,则a的取值范围为(  )
A.(0,$\frac{1}{e}}$)B.(0,$\frac{1}{2e}}$)C.($\frac{1}{e}$,+∞)D.(${\frac{1}{2e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知点A在函数y=2x的图象上,点B,C在函数y=4•2x的图象上,若△ABC是以B为直角顶点的等腰直角三角形,且点A,C的纵坐标相同,则点B横坐标的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin($\frac{π}{2}$+x)cosx-sinxcos(3π-x).
(1)求函数f(x)的最小正周期;
(2)在△ABC中,已知A为锐角,f(A)=1,BC=2,B=$\frac{π}{6}$,求AC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若对于任意的x∈R,不等式f(x)>g(x)恒成立,则实数a的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,输出的结果是(  )
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

同步练习册答案