精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,N(0,-1)为椭圆的一个顶点,且右焦点F2到双曲线x2-y2=2渐近线的距离为$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(k≠0)与椭圆C交于A、B两点.
①若NA,NB为邻边的平行四边形为菱形,求m的取值范围;
②若直线l过定点P(1,1),且线段AB上存在点T,满足$\frac{|AP|}{|AT|}$=$\frac{|PB|}{|TB|}$,证明:点T在定直线上.

分析 解:(1)通过双曲线x2-y2=2的渐近线方程为y=±x及点到直线的距离公式可知$\frac{|c|}{\sqrt{2}}$=$\sqrt{2}$,结合b=1、a2=b2+c2可求出a,b,c,进而可得椭圆C的方程;
(2)①通过将直线l代入椭圆C方程,利用韦达定理,可得AB的中点S($\frac{-5km}{1+5{k}^{2}}$,$\frac{m}{1+5{k}^{2}}$),利用NS⊥AB即kNS=-$\frac{1}{k}$化简可知5k2+1=4m,代入根的判别式可得结论;②通过设T(x,y),设$\overrightarrow{PA}$=-λ$\overrightarrow{AT}$,$\overrightarrow{PB}$=λ$\overrightarrow{BT}$(λ≠0,±1),可分别用λ、x、y表示出A、B两点的横纵坐标,利用点A、B在椭圆C上整理即得结论.

解答 解:(1)因为双曲线x2-y2=2的渐近线方程为:y=±x,
所以由题可知:b=1,$\frac{|c|}{\sqrt{2}}$=$\sqrt{2}$,a2=b2+c2
解得:c=2,b=1,a2=5,
所以椭圆C的方程为:$\frac{{x}^{2}}{5}$+y2=1;
(2)①将直线l代入椭圆C得:(1+5k2)x2+10kmx+5m2-5=0,
△=20(1+5k2-m2)>0,设A(x1,y2),B(x2,y2),则
x1+x2=$\frac{-10km}{1+5{k}^{2}}$,x1x2=$\frac{5{m}^{2}-5}{1+5{k}^{2}}$,
则AB的中点S($\frac{-5km}{1+5{k}^{2}}$,$\frac{m}{1+5{k}^{2}}$),
因为NA,NB为邻边的平行四边形为菱形,
所以NS⊥AB,则kNS=-$\frac{1}{k}$,
所以$\frac{\frac{m}{1+5{k}^{2}}+1}{\frac{-5km}{1+5{k}^{2}}}$=$\frac{5{k}^{2}+1+m}{-5km}$=-$\frac{1}{k}$,化简得:5k2+1=4m,
代入△=20(1+5k2-m2)>0,得:-m2+4m>0,解得:0<m<4.
由5k2=4m-1>0得:m>$\frac{1}{4}$,
所以m的取值范围为:($\frac{1}{4}$,4);
②设T(x,y),由题设|$\overrightarrow{PA}$|,|$\overrightarrow{PB}$|,|$\overrightarrow{AT}$|,|$\overrightarrow{TB}$|均不为零,且$\frac{|AP|}{|AT|}$=$\frac{|PB|}{|TB|}$,
又P,A,T,B四点共线,可设$\overrightarrow{PA}$=-λ$\overrightarrow{AT}$,$\overrightarrow{PB}$=λ$\overrightarrow{BT}$(λ≠0,±1),
于是x1=$\frac{1-λx}{1-λ}$,y1=$\frac{1-λy}{1-λ}$,x2=$\frac{1+λx}{1+λ}$,y2=$\frac{1+λx}{1+λ}$,
由于A、B两点在椭圆C上,代入方程,得:
(x2+5y2-5)λ2-2(x+5y-5)λ+1=0,(x2+5y2-5)λ2+2(x+5y-5)λ+1=0,
两式相减,得:4(x+5y-5)λ=0,
由λ≠0可知x+5y-5=0,即点T(x,y)在定直线x+5y-5=0上.

点评 本题是一道直线与圆锥曲线的综合题,涉及求椭圆的方程、定直线问题,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{t{x}^{2}-1}{x}$-(t+1)lnx,t∈R,其中t∈R.
(1)若t=1,求证:x>1,f(x)>0成立;
(2)若t≥1,且f(x)>1在区间[$\frac{1}{e}$,e]上恒成立,求t的取值范围;
(3)若t>$\frac{1}{e}$,判断函数g(x)=x[f(x)+t+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c分别是角A,B,C所对的边,且满足b=2csinA.
(I)若C为锐角,且B=2A,求角C;
(II)若a=$\sqrt{13},sinA=\frac{3}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设i是虚数单位,若复数$a+\frac{2i}{1-i}$(a∈R)是纯虚数,则a=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\sqrt{3}$sinωx-cosωx,x=$\frac{π}{3}$为y=f(x)的对称轴,且f(x)在区间(-$\frac{π}{3}$,$\frac{π}{3}$)单调,则ω=(  )
A.-4B.-1C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}满足a1=$\frac{1}{256},{a_{n+1}}=2\sqrt{a_n}$,若bn=log2an-2,则b1•b2•…•bn的最大值为$\frac{625}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.中国古代数学家赵爽设计的弦图(如图1)是由四个全等的直角三角形拼成,四个全等的直角三角形也可拼成图2所示的菱形,已知弦图中,大正方形的面积为100,小正方形的面积为4,则图2中菱形的一个锐角的正弦值为(  )
A.$\frac{24}{25}$B.$\frac{3}{5}$C.$\frac{4}{5}$D.$\frac{7}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某校有高级教师90人,一级教师120人,二级教师75人,现按职称用分层抽样的方法抽取38人参加一项调查,则抽取的一级教师人数为(  )
A.10B.12C.16D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数(a-i)(1-i)(a∈R)的实部与虚部相等,则实数a=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案