精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\sqrt{3}$sinωx-cosωx,x=$\frac{π}{3}$为y=f(x)的对称轴,且f(x)在区间(-$\frac{π}{3}$,$\frac{π}{3}$)单调,则ω=(  )
A.-4B.-1C.2D.5

分析 利用辅助角公式化简f(x)=$\sqrt{3}$sinωx-cosωx=2sin(ωx$-\frac{π}{6}$),根据x=$\frac{π}{3}$,可得f($\frac{π}{3}$)是最大值或最小值,可得ω的值,在根据f(x)在区间(-$\frac{π}{3}$,$\frac{π}{3}$)单调,确定ω即可.

解答 解:由题意,f(x)=$\sqrt{3}$sinωx-cosωx=2sin(ωx$-\frac{π}{6}$),
∵x=$\frac{π}{3}$为y=f(x)的对称轴,
∴当x=$\frac{π}{3}$时,若f($\frac{π}{3}$)是最大值,
令$\frac{ωπ}{3}$$-\frac{π}{6}$=$\frac{π}{2}$,可得ω=2.
则f(x)=2sin(2x$-\frac{π}{6}$),
考查f(x)在区间(-$\frac{π}{3}$,$\frac{π}{3}$)不是单调函数.
若f($\frac{π}{3}$)是最小值,
令$\frac{ωπ}{3}$$-\frac{π}{6}$=-$\frac{π}{2}$,可得ω=-1.
则f(x)=2sin(-x$-\frac{π}{6}$),
考查f(x)在区间(-$\frac{π}{3}$,$\frac{π}{3}$)是单调函数.
故选B.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出i的值为(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=acosx+x2,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),a∈R.
(Ⅰ)若曲线y=f(x)在点($\frac{π}{6}$,f($\frac{π}{6}$))处的切线的斜率为$\frac{1}{2}+\frac{π}{3}$,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若f(x)≥2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,点$P(\sqrt{2},2)$在椭圆上.
(1)求椭圆C的方程;
(2)过椭圆上的焦点F作两条相互垂直的弦AC,BD,求|AC|+|BD|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,N(0,-1)为椭圆的一个顶点,且右焦点F2到双曲线x2-y2=2渐近线的距离为$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(k≠0)与椭圆C交于A、B两点.
①若NA,NB为邻边的平行四边形为菱形,求m的取值范围;
②若直线l过定点P(1,1),且线段AB上存在点T,满足$\frac{|AP|}{|AT|}$=$\frac{|PB|}{|TB|}$,证明:点T在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)设P是直线y=-2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.
(1)求证:PA⊥平面ABCD;
(2)求直线BF与平面AFD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点P为一动点,点A的坐标为(1,$\frac{3}{2}$),点B的坐标为(1,-$\frac{3}{2}$).两条不同的直线PA、PB与x轴交点的横坐标分别为m、n且满足mn=4,记动点P的轨迹及A,B两点组成曲线C,设过点(0,1)且斜率为k的直线l与曲线C交于不同的两点M,N,线段MN的中点为E点,直线OE与曲线C交于Q、R两点.
(1)求曲线C的方程;
(2)若|EM|•|EN|=λ|EQ|•|ER|,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案