精英家教网 > 高中数学 > 题目详情
8.某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.

分析 (Ⅰ)乙、丙所得分数相等时,应为0分或10分,计算对应的概率值即可;
(Ⅱ)根据题意,X的可能取值为0,5,10,15,20,25,30,求出对应的概率值,写出X的分布列,再计算数学期望值.

解答 解:(Ⅰ)乙、丙所得分数相等时,应为0分或10分,
其概率为P=(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)+$\frac{2}{3}$×$\frac{2}{3}$×$\frac{1}{2}$×(1-$\frac{1}{2}$)=$\frac{5}{18}$;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,则X的可能取值为0,5,10,15,20,25,30,
其概率为P(X=0)=(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{6}$,
P(X=5)=$\frac{2}{3}$×(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{9}$,
P(X=10)=$\frac{2}{3}$×$\frac{2}{3}$×(1-$\frac{1}{2}$)+(1-$\frac{2}{3}$)×$\frac{1}{2}$×(1-$\frac{1}{2}$)=$\frac{11}{36}$,
P(X=15)=$\frac{2}{3}$×$\frac{1}{2}$×(1-$\frac{2}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{18}$,
P(X=20)=$\frac{2}{3}$×$\frac{2}{3}$×$\frac{1}{2}$×(1-$\frac{1}{2}$)+(1-$\frac{2}{3}$)×$\frac{1}{2}$×$\frac{1}{2}$=$\frac{7}{36}$,
P(X=25)=$\frac{2}{3}$×(1-$\frac{2}{3}$)×$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{18}$,
P(X=30)=$\frac{2}{3}$×$\frac{2}{3}$×$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{9}$;
∴X的分布列为:

X051015202530
P$\frac{1}{6}$$\frac{1}{9}$$\frac{11}{36}$$\frac{1}{18}$$\frac{7}{36}$$\frac{1}{18}$$\frac{1}{9}$
数学期望为EX=0×$\frac{1}{6}$+5×$\frac{1}{9}$+10×$\frac{11}{36}$+15×$\frac{1}{18}$+20×$\frac{7}{36}$+25×$\frac{1}{18}$+30×$\frac{1}{9}$=$\frac{235}{18}$.

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了分析与计算能力,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品.如图所示的程序框图表示统计20个样本中的优质品,其中m表示每件药材的重量,则图中①,②两处依次应该填的整数分别是(  )
A.14,19B.14,20C.15,19D.15,20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=ex+2x-a(a∈R,e为自然对数的底数),若曲线$\frac{{x}^{2}}{4}$+y2=1上存在点(x0,y0),使得f(f(y0))=y0,则实数a的取值范围是[-1+e-1,e+1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}sinωxsin({\frac{π}{2}-ωx})-{cos^2}ωx+\frac{1}{2}({ω>0})$,其图象上相邻的最高点和最低点的距离为$\sqrt{5}$.
(I)求f(x)的解析式及对称中心;
(II)求函数f(x)在$[{-1,\frac{1}{2}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.变量x,y满足线性约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥-x-1}\end{array}\right.$,目标函数z=kx+y仅在点(0,2)取得最大值,则k的取值范围是(  )
A.-3<k<1B.k>1C.-1<k<1D.-1<k<3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c分别是角A,B,C所对的边,且满足b=2csinA.
(I)若C为锐角,且B=2A,求角C;
(II)若a=$\sqrt{13},sinA=\frac{3}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果执行如图的程序框图,输出的S=30,则判断框处为(  )
A.k<5B.k≤5C.k≥6D.k>6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\sqrt{3}$sinωx-cosωx,x=$\frac{π}{3}$为y=f(x)的对称轴,且f(x)在区间(-$\frac{π}{3}$,$\frac{π}{3}$)单调,则ω=(  )
A.-4B.-1C.2D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=sin({ωx+φ})({ω>0,0<φ<\frac{π}{2}}),f(0)=-f({\frac{π}{2}})$,若将f(x)的图象向左平移$\frac{π}{12}$个单位后所得函数的图象关于原点对称,则φ=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

同步练习册答案