精英家教网 > 高中数学 > 题目详情
20.如果执行如图的程序框图,输出的S=30,则判断框处为(  )
A.k<5B.k≤5C.k≥6D.k>6

分析 算法的功能是求S=2+4+6+…+2k的值,根据输出的S=30,确定跳出循环的k值为6,从而得判断框内应填的条件.

解答 解:由框图的流程知:算法的功能是求S=2+4+6+…+2k的值,
∵输出的S=72,即S=$\frac{2+2k}{2}$×k=30,可得:k=5,
∴跳出循环的k值为6,
∴判断框内应填k≤5或k<6.
故选:B.

点评 本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\sqrt{2}$,且它的一个顶点到较近焦点的距离为$\sqrt{2}$-1,则双曲线C的方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知公差为d的等差数列{an}前n项和为Sn,若有确定正整数n0,对任意正整数m,${S}_{{n}_{0}}$•${S}_{{n}_{0}+m}$<0恒成立,则下列说法错误的是(  )
A.a1•d<0B.|Sn|有最小值
C.${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$>0D.${a}_{{n}_{0}+1}•{a}_{{n}_{0}+2}$>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示程序框图,若输入的k=4,则输出的s=(  )
A.$\frac{1}{3}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=acosx+x2,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),a∈R.
(Ⅰ)若曲线y=f(x)在点($\frac{π}{6}$,f($\frac{π}{6}$))处的切线的斜率为$\frac{1}{2}+\frac{π}{3}$,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)若f(x)≥2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,点$P(\sqrt{2},2)$在椭圆上.
(1)求椭圆C的方程;
(2)过椭圆上的焦点F作两条相互垂直的弦AC,BD,求|AC|+|BD|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4.
(Ⅰ)求抛物线E的方程;
(Ⅱ)设P是直线y=-2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}满足a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$,n∈N,*
(1)求a2,a3
(2)证明:数列{an}为递增数列
(3)证明:$\frac{n}{2n+1}$≤an$≤\frac{2n-1}{2n+1}$,n∈N*

查看答案和解析>>

同步练习册答案