精英家教网 > 高中数学 > 题目详情
11.已知公差为d的等差数列{an}前n项和为Sn,若有确定正整数n0,对任意正整数m,${S}_{{n}_{0}}$•${S}_{{n}_{0}+m}$<0恒成立,则下列说法错误的是(  )
A.a1•d<0B.|Sn|有最小值
C.${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$>0D.${a}_{{n}_{0}+1}•{a}_{{n}_{0}+2}$>0

分析 利用已知及其等差数列的单调性通项公式与求和公式即可得出.

解答 解:∵公差为d的等差数列{an},有确定正整数n0,对任意正整数m,${S}_{{n}_{0}}$•${S}_{{n}_{0}+m}$<0恒成立,
∴a1与d异号,即a1•d<0,|Sn|有最小值,${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$<0,${a}_{{n}_{0}+2}$•${a}_{{n}_{0}+1}$>0.
因此C不正确.
故选:C.

点评 本题考查了等差数列的单调性通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知曲线C:$\frac{x^2}{4}+\frac{y^2}{3}$=1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1,四边形ABCD的面积为S2
(Ⅰ)当点B坐标为(-1,0)时,求k的值;
(Ⅱ)若S1=$\frac{{2\sqrt{30}}}{7}$,求线段AD的长;
(Ⅲ)求$\frac{S_1}{S_2}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知直线l:$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}$(其中t为参数,α为倾斜角).以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=$\frac{cosθ}{{{{sin}^2}θ}}$.
(1)求C的直角坐标方程,并求C的焦点F的直角坐标;
(2)已知点P(1,0),若直线l与C相交于A,B两点,且$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=2,求△FAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=ex+2x-a(a∈R,e为自然对数的底数),若曲线$\frac{{x}^{2}}{4}$+y2=1上存在点(x0,y0),使得f(f(y0))=y0,则实数a的取值范围是[-1+e-1,e+1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2x+1-2x2的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\sqrt{3}sinωxsin({\frac{π}{2}-ωx})-{cos^2}ωx+\frac{1}{2}({ω>0})$,其图象上相邻的最高点和最低点的距离为$\sqrt{5}$.
(I)求f(x)的解析式及对称中心;
(II)求函数f(x)在$[{-1,\frac{1}{2}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.变量x,y满足线性约束条件$\left\{\begin{array}{l}{3x+y-2≤0}\\{y-x≤2}\\{y≥-x-1}\end{array}\right.$,目标函数z=kx+y仅在点(0,2)取得最大值,则k的取值范围是(  )
A.-3<k<1B.k>1C.-1<k<1D.-1<k<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果执行如图的程序框图,输出的S=30,则判断框处为(  )
A.k<5B.k≤5C.k≥6D.k>6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x2-2x<0},B={x|y=log2(x-1)},则A∪B=(  )
A.(0,+∞)B.(1,2)C.(2,+∞)D.(-∞,0)

查看答案和解析>>

同步练习册答案