2£®ÒÑÖªÖ±Ïßl£º$\left\{{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}}$£¨ÆäÖÐtΪ²ÎÊý£¬¦ÁΪÇãб½Ç£©£®ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{cos¦È}{{{{sin}^2}¦È}}$£®
£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì£¬²¢ÇóCµÄ½¹µãFµÄÖ±½Ç×ø±ê£»
£¨2£©ÒÑÖªµãP£¨1£¬0£©£¬ÈôÖ±ÏßlÓëCÏཻÓÚA£¬BÁ½µã£¬ÇÒ$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$=2£¬Çó¡÷FABµÄÃæ»ý£®

·ÖÎö £¨1£©Ô­·½³Ì±äÐÎΪ¦Ñ2sin2¦È=¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºCµÄÖ±½Ç×ø±ê·½³Ì£®
£¨2£©°ÑlµÄ·½³Ì´úÈëy2=xµÃt2sin2¦Á-tcos¦Á-1=0£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¼°ÆäÒÑÖª¿ÉµÃ£º|t1-t2|=2|t1t2|£¬Æ½·½µÃ${£¨{{t_1}+{t_2}}£©^2}-4{t_1}{t_2}=4t_1^2t_2^2$£¬¿ÉµÃsin2¦Á=1£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ô­·½³Ì±äÐÎΪ¦Ñ2sin2¦È=¦Ñcos¦È£¬
¡ßx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬
¡àCµÄÖ±½Ç×ø±ê·½³ÌΪy2=x£¬Æä½¹µãΪ$F£¨{\frac{1}{4}£¬0}£©$£®
£¨2£©°ÑlµÄ·½³Ì´úÈëy2=xµÃt2sin2¦Á-tcos¦Á-1=0£¬
Ôò${t_1}+{t_2}=\frac{cos¦Á}{{{{sin}^2}¦Á}}£¬{t_1}{t_2}=-\frac{1}{{{{sin}^2}¦Á}}$£¬¢Ù
$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}=2?|{PA}|+|{PB}|=2|{PA}|•|{PB}|$£¬
¼´|t1-t2|=2|t1t2|£¬
ƽ·½µÃ${£¨{{t_1}+{t_2}}£©^2}-4{t_1}{t_2}=4t_1^2t_2^2$£¬¢Ú
°Ñ¢Ù´úÈë¢ÚµÃ$\frac{{{{cos}^2}¦Á}}{{{{sin}^4}¦Á}}+\frac{4}{{{{sin}^2}¦Á}}=\frac{4}{{{{sin}^4}¦Á}}$£¬¡àsin2¦Á=1£¬
¡ß¦ÁÊÇÖ±ÏßlµÄÇãб½Ç£¬¡à$¦Á=\frac{¦Ð}{2}$£¬
¡àlµÄÆÕͨ·½³ÌΪx=1£¬ÇÒ|AB|=2£¬
µãFµ½ABµÄ¾àÀëd=1-$\frac{1}{4}$=$\frac{3}{4}$
¡à¡÷FABµÄÃæ»ýΪS=$\frac{1}{2}$|AB|¡Ád=$\frac{1}{2}¡Á2¡Á\frac{3}{4}$=$\frac{3}{4}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¼«×ø±êϵÓë²ÎÊý·½³ÌµÄÏà¹ØÖªÊ¶¡¢¼«×ø±ê·½³ÌÓëÆ½ÃæÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ1£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AB¡ÎDC£¬¡ÏBAD=90¡ã£¬AB=AD=$\frac{1}{2}$CD=1£¬Èçͼ2£¬½«¡÷ABDÑØBDÕÛÆðÀ´£¬Ê¹Æ½ÃæABD¡ÍÆ½ÃæBCD£¬ÉèEΪADµÄÖе㣬FΪACÉÏÒ»µã£¬OΪBDµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAO¡ÍÆ½ÃæBCD£»¡¢
£¨¢ò£©ÈôÈýÀâ×¶A-BEFµÄÌå»ýΪ$\frac{\sqrt{2}}{18}$£¬Çó¶þÃæ½ÇA-BE-FµÄÓàÏÒÖµµÄ¾ø¶ÔÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªa£¼b£¼0£¬Ôò£¨¡¡¡¡£©
A£®$\frac{1}{a}£¼\frac{1}{b}$B£®a2£¼abC£®a2£¼b2D£®$\frac{1}{a-b}£¼\frac{1}{a}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑ֪˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊe=$\sqrt{2}$£¬ÇÒËüµÄÒ»¸ö¶¥µãµ½½Ï½ü½¹µãµÄ¾àÀëΪ$\sqrt{2}$-1£¬ÔòË«ÇúÏßCµÄ·½³ÌΪx2-y2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬ÃüÌâp£º¡°B¡Ù60¡ã¡°£¬ÃüÌâq£º¡°¡÷ABCµÄÈý¸öÄÚ½ÇA£¬B£¬C²»³ÉµÈ²îÊýÁС°£¬ÄÇôpÊÇqµÄ
£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öiµÄֵΪ£¨¡¡¡¡£©
A£®1006B£®1007C£®1008D£®1009

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ºÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾1£©µÄ×ó½¹µãFÓëÅ×ÎïÏßy2=-4xµÄ½¹µãÖØºÏ£¬Ö±Ïßx-y+$\frac{\sqrt{2}}{2}$=0ÓëÒÔÔ­µãOΪԲÐÄ£¬ÒÔÍÖÔ²µÄÀëÐÄÂÊeΪ°ë¾¶µÄÔ²ÏàÇУ®
£¨I £©Çó¸ÃÍÖÔ²CµÄ·½³Ì
£¨II£©ÉèµãP×ø±êΪ£¨-$\frac{1}{8}$£¬0£©£¬Èô|PA|=|PB|£¬ÇóÖ±ÏßABµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¹«²îΪdµÄµÈ²îÊýÁÐ{an}ǰnÏîºÍΪSn£¬ÈôÓÐÈ·¶¨ÕýÕûÊýn0£¬¶ÔÈÎÒâÕýÕûÊým£¬${S}_{{n}_{0}}$•${S}_{{n}_{0}+m}$£¼0ºã³ÉÁ¢£¬ÔòÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
A£®a1•d£¼0B£®|Sn|ÓÐ×îСֵ
C£®${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$£¾0D£®${a}_{{n}_{0}+1}•{a}_{{n}_{0}+2}$£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²C£º$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬µã$P£¨\sqrt{2}£¬2£©$ÔÚÍÖÔ²ÉÏ£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýÍÖÔ²ÉϵĽ¹µãF×÷Á½ÌõÏ໥´¹Ö±µÄÏÒAC£¬BD£¬Çó|AC|+|BD|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸