精英家教网 > 高中数学 > 题目详情
1.已知曲线C:$\frac{x^2}{4}+\frac{y^2}{3}$=1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1,四边形ABCD的面积为S2
(Ⅰ)当点B坐标为(-1,0)时,求k的值;
(Ⅱ)若S1=$\frac{{2\sqrt{30}}}{7}$,求线段AD的长;
(Ⅲ)求$\frac{S_1}{S_2}$的范围.

分析 (Ⅰ)由题意B(-1,0),将x=-1代入椭圆方程,即可求得A点坐标,代入直线方程,即可求得k的值;
(Ⅱ)将直线方程代入椭圆方程,由题意求得k的取值范围,利用韦达定理及弦长公式求得丨AD丨,根据三角形的面积公式,即可求得k的值,求得丨AD丨,
(Ⅲ)求得,四边形ABCD的面积为S2,求得$\frac{S_1}{S_2}$的表达式,由k的取值范围,即可求得$\frac{S_1}{S_2}$的取值范围.

解答 解:(Ⅰ)由题意,y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.点B坐标为(-1,0),
则点A的横坐标为-1,代入曲线C:$\frac{x^2}{4}+\frac{y^2}{3}$=1(y≥0),解得点A的纵坐标为x=$\frac{3}{2}$,
即A(-1,$\frac{3}{2}$)
∵点A在直线y=kx+1,则有:$\frac{3}{2}$=k×(-1)+1,
∴解得k=-$\frac{1}{2}$,
k的值-$\frac{1}{2}$;
(Ⅱ)由题意,k不存在时,四边形ABCD也不存在,则k必须存在.
设点A(xA,yA),点D(xD,yD),则点B(xA,0),点C(xD,0)
直线l:y=kx+1与曲线C交于A,D两点,
A,D两点代入曲线C,即$\left\{\begin{array}{l}{y=kx+1}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y,整理得:(3+4k2)x2+8kx-8=0,
由直线l经过椭圆左右顶点时,k=±$\frac{1}{2}$,
则-$\frac{1}{2}$≤k≤$\frac{1}{2}$,
解得:xA+xD=-$\frac{8k}{3+4{k}^{2}}$,xAxD=$\frac{8}{3+4{k}^{2}}$,|AD|=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{\sqrt{96(2{k}^{2}+1)}}{3+4{k}^{2}}$,
△OAD的面积为S1,设原点(0,0)到直线l:y=kx+1距离为h,
则h=$\frac{1}{\sqrt{1+{k}^{2}}}$,
S1=$\frac{{2\sqrt{30}}}{7}$=$\frac{1}{2}$|AD|•h=$\frac{2\sqrt{6}(2{k}^{2}+1)}{3+4{k}^{2}}$=$\frac{{2\sqrt{30}}}{7}$,整理得:40k4+11k2-2=0,则k2=$\frac{1}{8}$,
解得k=±$\frac{\sqrt{2}}{4}$,|AD|=$\frac{6\sqrt{15}}{7}$,
∴线段AD的长$\frac{6\sqrt{15}}{7}$;
(Ⅲ)由题意及(i):可知:S2=$\frac{1}{2}$(y1+y2)丨x1-x2丨,
则$\frac{S_1}{S_2}$=$\frac{\frac{1}{2}丨{x}_{1}-{x}_{2}丨}{\frac{1}{2}({y}_{1}+{y}_{2})丨{x}_{1}-{x}_{2}丨}$=$\frac{1}{{y}_{1}+{y}_{2}}$,
由y1+y2=kx1+1+kx2+1=k(x1+x2)+2,
∴$\frac{S_1}{S_2}$=$\frac{1}{{y}_{1}+{y}_{2}}$=$\frac{1}{k×(-\frac{8k}{3+4{k}^{2}})+2}$=$\frac{3+4{k}^{2}}{6}$,
由-$\frac{1}{2}$≤k≤$\frac{1}{2}$,
∴$\frac{1}{2}$≤$\frac{S_1}{S_2}$≤$\frac{2}{3}$,
∴$\frac{S_1}{S_2}$的取值范围[$\frac{1}{2}$,$\frac{2}{3}$].

点评 本题考查直线与圆锥曲线位置关系的应用,考查了圆锥曲线的简单性质,考查弦长公式的应用,体现了“设而不求”的解题思想方法,计算量大,化简复杂,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴.若|F1F2|=12,|PF2|=5,则该双曲线的离心率为(  )
A.3B.$\frac{3}{2}$C.$\frac{12}{5}$D.$\frac{13}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在直角梯形ABCD中,AB∥DC,∠BAD=90°,AB=AD=$\frac{1}{2}$CD=1,如图2,将△ABD沿BD折起来,使平面ABD⊥平面BCD,设E为AD的中点,F为AC上一点,O为BD的中点.
(Ⅰ)求证:AO⊥平面BCD;、
(Ⅱ)若三棱锥A-BEF的体积为$\frac{\sqrt{2}}{18}$,求二面角A-BE-F的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|y=log2(3-x)},B={x||2x-1|>1},则A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|x<0或0<x<3}D.{x|x<0或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}({θ为参数})}\right.$,在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{2}x}\\{y'=\frac{1}{{\sqrt{3}}}y}\end{array}}\right.$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点$A(\frac{3}{2},π)$(极坐标)且倾斜角为$\frac{π}{6}$的直线l与曲线C'交于M,N两点,弦MN的中点为P,求$\frac{|AP|}{|AM|•|AN|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=|xex|,又g(x)=[f(x)]2-tf(x)(t∈R),若方程g(x)=-2有4个不同的根,则t的取值范围为(  )
A.$({-∞,-\frac{1}{e}-2e})$B.$({-∞,\frac{1}{e}-e})$C.$({\frac{1}{e}+2e,+∞})$D.$({\frac{1}{e}+e,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a<b<0,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2<abC.a2<b2D.$\frac{1}{a-b}<\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\sqrt{2}$,且它的一个顶点到较近焦点的距离为$\sqrt{2}$-1,则双曲线C的方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知公差为d的等差数列{an}前n项和为Sn,若有确定正整数n0,对任意正整数m,${S}_{{n}_{0}}$•${S}_{{n}_{0}+m}$<0恒成立,则下列说法错误的是(  )
A.a1•d<0B.|Sn|有最小值
C.${a}_{{n}_{0}}$•${a}_{{n}_{0}+1}$>0D.${a}_{{n}_{0}+1}•{a}_{{n}_{0}+2}$>0

查看答案和解析>>

同步练习册答案