精英家教网 > 高中数学 > 题目详情
16.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}({θ为参数})}\right.$,在同一平面直角坐标系中,将曲线C上的点按坐标变换$\left\{{\begin{array}{l}{x'=\frac{1}{2}x}\\{y'=\frac{1}{{\sqrt{3}}}y}\end{array}}\right.$得到曲线C',以原点为极点,x轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线C'的极坐标方程;
(Ⅱ)若过点$A(\frac{3}{2},π)$(极坐标)且倾斜角为$\frac{π}{6}$的直线l与曲线C'交于M,N两点,弦MN的中点为P,求$\frac{|AP|}{|AM|•|AN|}$的值.

分析 (I)曲线C的参数方程为$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}({θ为参数})}\right.$,利用平方关系即可化为普通方程.利用变换公式代入即可得出曲线C'的直角坐标方程,利用互化公式可得极坐标方程.
(II)点$A(\frac{3}{2},π)$直角坐标是$A(-\frac{3}{2},0)$,将l的参数方程$\left\{{\begin{array}{l}{x=-2+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}}\right.$代入曲线C'的直角坐标方程可得$4{t^2}-6\sqrt{3}t+5=0$,利用根与系数的关系即可得出.

解答 解:(Ⅰ)$C:\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.⇒C:\frac{x^2}{4}+\frac{y^2}{3}=1$,(2分)
将$\left\{{\begin{array}{l}{x'=\frac{1}{2}x}\\{y'=\frac{1}{{\sqrt{3}}}y}\end{array}}\right.⇒\left\{{\begin{array}{l}{x=2x'}\\{y=\sqrt{3}y'}\end{array}}\right.$,代入C的普通方程可得x'2+y'2=1,(4分)
即C':x2+y2=1,所以曲线C'的极坐标方程为 C':ρ=1(5分)
(Ⅱ)点$A(\frac{3}{2},π)$直角坐标是$A(-\frac{3}{2},0)$,将l的参数方程$\left\{{\begin{array}{l}{x=-2+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}}\right.$
代入x2+y2=1,可得$4{t^2}-6\sqrt{3}t+5=0$,(8分)
∴t1+t2=$\frac{3\sqrt{3}}{2}$,t1•t2=$\frac{5}{4}$,
所以$\frac{|AP|}{|AM|•|AN|}=\frac{{|\frac{{{t_1}+{t_2}}}{2}|}}{{|{t_1}{t_2}|}}=\frac{{3\sqrt{3}}}{5}$.                                      (10分)

点评 本题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:
喜欢游泳不喜欢游泳合计
男生10
女生20
合计
已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(Ⅰ)请将上述列联表补充完整;
(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.明朝数学家程大位将“孙子定理”(也称“中国剩余定理”)编成易于上口的《孙子口诀》:三人同行七十稀,五树梅花廿一支,七子团圆正半月,除百零五便得知.已知正整数n被3除余2,被5除余3,被7除余4,求n的最小值.按此口诀的算法如图,则输出n的结果为(  )
A.53B.54C.158D.263

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在平面直角坐标系 xOy中,已知抛物线E:y2=2px(p>0)的焦点为F,P是抛物线 E上位于第一象限内的任意一点,Q是线段 PF上的点,且满足$\overrightarrow{OQ}=\frac{2}{3}\overrightarrow{OP}+\frac{1}{3}\overrightarrow{OF}$,则直线 OQ的斜率的最大值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点M(x,y)为平面区域D:$\left\{\begin{array}{l}{x-y≥0}\\{y-\frac{1}{x}≤0}\\{y≥a,(0<a<1)}\end{array}\right.$内的一个动点,若z=$\frac{y+1}{x}$的最大值为3,则区域D的面积为(  )
A.ln2+$\frac{5}{8}$B.ln2-$\frac{1}{2}$C.ln2+$\frac{1}{8}$D.ln2-$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C:$\frac{x^2}{4}+\frac{y^2}{3}$=1(y≥0),直线l:y=kx+1与曲线C交于A,D两点,A,D两点在x轴上的射影分别为点B,C.记△OAD的面积S1,四边形ABCD的面积为S2
(Ⅰ)当点B坐标为(-1,0)时,求k的值;
(Ⅱ)若S1=$\frac{{2\sqrt{30}}}{7}$,求线段AD的长;
(Ⅲ)求$\frac{S_1}{S_2}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)是[a,b]上的“平均值函数”,x0而是它的一个均值点.
例如y=|x|是[-2,2]上的“平均值函数”,0就是它的均值点.给出以下命题:
①函数f(x)=sinx-1是[-π,π]上的“平均值函数”;
②若y=f(x)是[a,b]上的“平均值函数”,则它的均值点x0≤$\frac{a+b}{2}$;
③若函数f(x)=x2+mx-1是[-1,1]上的“平均值函数”,则实数m∈(-2,0);
④若f(x)=lnx是区间[a,b](b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0<$\frac{1}{{\sqrt{ab}}}$.
其中的真命题有①③④(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}中,a3=4,a6=$\frac{1}{2}$,则公比q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2x+1-2x2的图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案