精英家教网 > 高中数学 > 题目详情
18.现有若干(大于20)件某种自然生长的中药材,从中随机抽取20件,其重量都精确到克,规定每件中药材重量不小于15克为优质品.如图所示的程序框图表示统计20个样本中的优质品,其中m表示每件药材的重量,则图中①,②两处依次应该填的整数分别是(  )
A.14,19B.14,20C.15,19D.15,20

分析 要统计20个样本中的优质品数,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:由题意,模拟程序的运行,可得:
要统计20个样本中的优质品数,每件中药材重量不小于15克为优质品.
故当m>14时,执行循环体,k=k+1,计数器k的值加1,
当n=19时,输入了20个m的值,故当n>19时,退出循环,输出k的值.
故①,②两处依次应该填的整数分别是14,19.
故选:A.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=-2,an+1=2an+4.
( I)求证{an+4}是等比数列,并求数列{an}的通项公式;
( II)求数列{an}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|y=log2(3-x)},B={x||2x-1|>1},则A∩B=(  )
A.{x|1<x<3}B.{x|-1<x<3}C.{x|x<0或0<x<3}D.{x|x<0或1<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=|xex|,又g(x)=[f(x)]2-tf(x)(t∈R),若方程g(x)=-2有4个不同的根,则t的取值范围为(  )
A.$({-∞,-\frac{1}{e}-2e})$B.$({-∞,\frac{1}{e}-e})$C.$({\frac{1}{e}+2e,+∞})$D.$({\frac{1}{e}+e,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a<b<0,则(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2<abC.a2<b2D.$\frac{1}{a-b}<\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xex
(Ⅰ)讨论函数g(x)=af(x)+ex的单调性;
(Ⅱ)若直线y=x+2与曲线y=f(x)的交点的横坐标为t,且t∈[m,m+1],求整数m所有可能的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率e=$\sqrt{2}$,且它的一个顶点到较近焦点的距离为$\sqrt{2}$-1,则双曲线C的方程为x2-y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,则输出i的值为(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是$\frac{3}{4}$、$\frac{2}{3}$、$\frac{1}{2}$,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.

查看答案和解析>>

同步练习册答案