精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2c-a)cosB-bcosA=0.
(1)若b=2,求△ABC的面积的最大值;    
(2)求
3
sinA+sin(C-
π
6
)的取值范围.
考点:正弦定理
专题:计算题,三角函数的图像与性质,解三角形
分析:利用正弦定理化简已知条件,根据三角形的内角和定理及诱导公式化简,由sinC不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可得到B的度数,
(1)根据余弦定理,由b,cosB和基本不等式,求出ac的最大值,然后利用三角形的面积公式,即可得到最大值;
(2)由求出的B的度数,根据三角形的内角和定理得到A+C的度数,用A表示出C,代入已知的等式,利用诱导公式及两角和的正弦函数公式化为一个角的正弦函数,根据A的范围求出这个角的范围,由正弦函数的值域即可得到所求式子的取值范围.
解答: 解:由已知及正弦定理得:(2sinC-sinA)cosB-sinBcosA=0,
即2sinCcosB-sin(A+B)=0,
在△ABC中,由sin(A+B)=sinC
故sinC(2cosB-1)=0,
由B,C∈(0,π),则2cosB-1=0,
所以B=60°;
(1)由b2=a2+c2-2accos60°≥2ac-ac=ac,
即ac≤4,当且仅当a=c=2,取得最大值4.
所以△ABC的面积S=
1
2
acsinB≤
1
2
×4×
3
2
=
3

即有面积的最大值为
3

(2)因为
3
sinA+sin(C-
π
6
)=
3
sinA+sin(
π
2
-A)
=
3
sinA+cosA=2sin(A+
π
6

又A∈(0,
3
),即有A+
π
6
∈(
π
6
6
),
即有sin(A+
π
6
)∈(
1
2
,1],
3
sinA+sin(C-
π
6
)=2sin(A+
π
6
)∈(1,2].
点评:此题考查学生灵活运用正弦定理及诱导公式化简求值,灵活运用三角形的面积公式及两角和的正弦函数公式化简求值,掌握正弦函数的值域,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(1-cosx)=sin2x,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设点O是△ABC的外心,AB=13,AC=12,则
BC
AO
为(  )
A、
4
9
B、-
25
2
C、
313
2
D、-
313
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中曲线C1:ρ(
2
cosθ+sinθ)=1
与在直角坐标系中曲线C2
x=acosθ
y=asinθ
(θ为参数,a>0)
只有一个公共点,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ是三角形的一个内角,且sinθ+cosθ=
1
2
,则x2sinθ-y2cosθ=1表示(  )
A、焦点在x轴上的椭圆
B、焦点在x轴上的双曲线
C、焦点在y轴上的椭圆
D、焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0)的图象与直线y=b (0<b<A)的三个相邻交点的横坐标分别是2,4,8,则f(x)的单调递增区间是(  )
A、[6kπ,6kπ+3],k∈Z
B、[6k-3,6k],k∈Z
C、[6k,6k+3],k∈Z
D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解高三学生的身体状况.抽取了部分男生的体重,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的男生人数是(  )
A、96B、32C、18D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙二人沿同一条道路同时从A地向B地出发,甲用速度v1与v2(v1≠v2)各走一半路程,乙用v1与v2各走全程所需时间的一半,试判断甲,乙两人
 
先到达B地.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数约为
 
尾.

查看答案和解析>>

同步练习册答案