精英家教网 > 高中数学 > 题目详情
7.用数学归纳法证明:12+22+32+…+(n-1)2+n2+(n-1)2+…+32+22+12=$\frac{1}{3}$n(2n2+1)

分析 用数学归纳法证明:(1)当n=1时,去证明等式成立;(2)假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.

解答 证明:利用数学归纳法证明:
(1)当n=1时,左边=1=右边,此时等式成立;
(2)假设当n=k∈N*时,12+22+32+…+(k-1)2+k2+(k-1)2+…+32+22+12
=$\frac{1}{3}$k(2k2+1)(k∈N*)成立.
则当n=k+1时,左边=12+22+32+…+k2+(k+1)2+k2+…+22+12
=$\frac{1}{3}$k(2k2+1)+(k+1)2+k2=$\frac{1}{3}$(k+1)[2(k+1)2+1]=右边,
∴当n=k+1时,等式成立.
根据(1)和(2),可知对n∈N*等式成立.

点评 本题考查了数学归纳法证明等式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知x,y的取值如表所示,若y与x线性相关,且$\widehaty$=0.5x+a,则a=(  )
x0134
y3.25.35.87.7
A.3.5B.2.2C.4.5D.3.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$(t为参数),以原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=-$\frac{6}{\sqrt{1+8si{n}^{2}θ}}$.
(1)求曲线C1的普通方程与曲线C2的直角坐标方程;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3:$\left\{\begin{array}{l}{x=-3\sqrt{3}+\sqrt{3}α}\\{y=-3-α}\end{array}\right.$(α为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若点(1,a)到直线y=x+1的距离是$\frac{{3\sqrt{2}}}{2}$,则实数a为(  )
A.-1B.5C.-1或5D.-3或3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数y=f(x)是定义在R上的奇函数,且在区间(-∞,0]上是减函数,则不等式f(lnx)<-f(1)的解集为(  )
A.(e,+∞)B.(${\frac{1}{e}$,+∞)C.(${\frac{1}{e}$,e)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l1:2x+3y-5=0,l2:3x-2y-3=0.
(1)求两直线的交点P的坐标;
(2)求过点P且平行于直线2x+y-3=0的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.调查200名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如表
患慢性气管炎未患慢性气管炎总计
吸烟s30100
不吸烟35t100
合计10595200
(1)表中s,t的值分别是多少;
(2)试问:有吸烟习惯与患慢性气管炎病是否有关?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若(1-mx)5=a0+a1x+a2x2+…+a5x5,且a5=-32,则a1+a2+a3+a4的值为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的中心在原点,离心率为$\frac{{\sqrt{3}}}{2}$,且与抛物线${y^2}=4\sqrt{3}x$有共同的焦点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设椭圆C的左、右顶点分别为A1、A2,P为椭圆C上异于A1、A2的动点,直线A1P、A2P分别交直线l:x=4于M、N两点,设d为M、N两点之间的距离,求d的最小值.

查看答案和解析>>

同步练习册答案