精英家教网 > 高中数学 > 题目详情

【题目】设函数定义域为,如果存在非实数对任意的都有,则称函数是“似周期函数”,非零常数为函数的似周期.现有下列四个关于“似周期函数”的命题:

①如果“似周期函数”的“似周期”为,那么它是周期为的周期函数;

②函数是“似周期函数”;

③函数是“似周期函数”;

④如果函数是“似周期函数”.那么”

其中是真命题的序号是____.(请填写所有满足条件的命题序号)

【答案】②③④

【解析】如果“似周期函数”的“似周期”为,则,则函数的周期为,故①正确;对于②,假设是“似周期函数”,则存在非零常数,使恒成立,即,即恒成立,则,不可能,故错误;对于③,设,即成立,故成立;对于④,若函数是“似周期函数”,则,若诱导公式知,当时,,当k=-1时,,所以“”,故成立;综上,①③④满足.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设(x1 , y1),(x2 , y2),…,(xn , yn),是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是(

A.x和y正相关
B.x和y的相关系数为直线l的斜率
C.x和y的相关系数在﹣1到0之间
D.当n为偶数时,分布在l两侧的样本点的个数一定相同

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲,乙二人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球即终止,每个球在每一次被取出的机会是等可能的.

(Ⅰ)求袋中原有白球的个数:

(Ⅱ)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)函数,求函数的最小值;

(2)对任意,都有成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究学生的数学核素养与抽象(能力指标)、推理(能力指标)、建模(能力指标)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标的值评定学生的数学核心素养;若,则数学核心素养为一级;若,则数学核心素养为二级;若,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:

学生编号

(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;

(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为,从数学核心素养等级不是一级的学生中任取一人,其综合指标为,记随机变量,求随机变量的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(2x3y)9a0x9a1x8ya2x7y2a9y9

(1)各项系数之和;

(2)所有奇数项系数之和;

(3)系数绝对值的和;

(4)分别求出奇数项的二项式系数之和与偶数项的二项式系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)函数在区间是单调函数,求实数的取值范围;

(2)若存在,使得成立,求满足条件的最大整数

(3)如果对任意的都有成立,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】8人排成一排照相,分别求下列条件下的不同照相方式的种数.

(1)其中甲、乙相邻,丙、丁相邻;

(2)其中甲、乙不相邻,丙、丁不相邻;

(要求写出解答过程,并用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两定点 和一动点,给出下列结论:

①若,则点的轨迹是椭圆;

②若,则点的轨迹是双曲线;

③若,则点的轨迹是圆;

④若,则点的轨迹关于原点对称;

⑤若直线斜率之积等于,则点的轨迹是椭圆(除长轴两端点).

其中正确的是__________(填序号).

查看答案和解析>>

同步练习册答案