精英家教网 > 高中数学 > 题目详情
5.已知函数$f(x)=\frac{n}{x}(n∈{N^*})$,过点P(n,f(n))与y=f(x)的图象相切的直线l交x轴于A(xn,0),交y轴于B(0,yn),则数列$\{\frac{1}{{{x_n}({x_n}+{y_n})}}\}$的前n项和为$\frac{n}{4n+4}$.

分析 f′(x)=-$\frac{n}{{x}^{2}}$,可得过点P(n,f(n))的切线方程为:y-1=$-\frac{1}{n}$(x-n),xn=2n,yn=2.利用“裂项求和”方法即可得出.

解答 解:f′(x)=-$\frac{n}{{x}^{2}}$,∴过点P(n,f(n))的切线方程为:y-1=$-\frac{1}{n}$(x-n),
则xn=2n,yn=2.
∴$\frac{1}{{x}_{n}({x}_{n}+{y}_{n})}$=$\frac{1}{2n(2n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∵数列$\{\frac{1}{{{x_n}({x_n}+{y_n})}}\}$的前n项和=$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}$$(1-\frac{1}{n+1})$
=$\frac{n}{4n+4}$.
故答案为:$\frac{n}{4n+4}$.

点评 本题考查了导数的运算法则及其几何意义、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.函数f(x)=cos2x+6sin($\frac{π}{2}$+x)的最大值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.书架上有4本不同的语文书,2本不同的数学书,从中任意取出2本,能取出数学书的概率为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A={-1,1,2},集合B={x|x-1>0},集合A∩B为(  )
A.ϕB.{1,2}C.{-1,1,2}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.《周髀算经》记载了勾股定理的公式与证明,勾股定理相传由商高(商代)发现,故又有称之为商高定理,满足等式a2+b2=c2的正整数组(a,b,c)叫勾股数,如(3,4,5)就是勾股数,执行如图所示的程序框图,如果输入的数是互相不相等的正整数,则下面四个结论正确的是(  )
A.输出的数组都是勾股数B.任意正整数都是勾股数组中的一个
C.相异两正整数都可以构造出勾股数D.输出的结果中一定有a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)={e^x}-\frac{1}{2}a{x^2}+(a-e)x$(x≥0)(e=2.71828…为自然对数的底数)
(1)当a=0时,求f(x)的最小值;
(2)当1<a<e时,求f(x)单调区间的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在菱形ABCD中,若AC=4,则$\overrightarrow{CA}$•$\overrightarrow{AB}$=-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若a>b,则下列不等式中正确的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.a2>b2C.a+b≥2$\sqrt{ab}$D.a2+b2>2ab

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x).若在区间(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=$\frac{1}{6}$x3-$\frac{1}{2}$mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上(  )
A.既有极大值,又有极小值B.有极小值,无极大值
C.有极大值,无极小值D.既无极大值,也无极小值

查看答案和解析>>

同步练习册答案