精英家教网 > 高中数学 > 题目详情
10.已知点A(0,2),抛物线C:y2=4x的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,则|FM|:|MN|=1:$\sqrt{5}$.

分析 求出抛物线C的焦点F的坐标,从而得到AF的斜率k=2.过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|.Rt△MPN中,根据tan∠NMP=-k=2,从而得到|PN|=2|PM|,进而算出|MN|=$\sqrt{5}$|PM|,由此即可得到|FM|:|MN|的值.

解答 解:∵抛物线C:y2=4x的焦点为F(1,0),点A坐标为(0,2),
∴抛物线的准线方程为l:x=-1,直线AF的斜率为k=-2,
过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|,
∵Rt△MPN中,tan∠NMP=-k=2,
∴$\frac{|PN|}{|PM|}$=2,可得|PN|=2|PM|,
得|MN|=$\sqrt{|PN{|}^{2}+|PM{|}^{2}}$=$\sqrt{5}$|PM|
因此可得|FM|:|MN|=|PM|:|MN|=1:$\sqrt{5}$.
故答案为:1:$\sqrt{5}$.

点评 本题给出抛物线方程和射线FA,求线段的比值.着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数$y=2x+\frac{4}{x}$(x∈R+)的最小值为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若点P(4,a)在曲线$\left\{\begin{array}{l}{x=\frac{t}{2}}\\{y=2\sqrt{t}}\end{array}\right.$(t为参数)上,点F(2,0),则|PF|等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知$cos(\frac{π}{6}-θ)=a$,(|a|≤1),则cos($\frac{5π}{6}$+θ)的值为-a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{1}{a}<\frac{1}{b}<0$ 则下列不等式:(1)a+b<a•b;(2)|a|>|b|(3)a<b中,正确的不等式有(  )
A.1个B.2个C.3个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=alnx-ax-3(a<0).
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[0,1],函数g(x)=x3+x2[f′(x)+m]在区间(t,2)上总不是单调函数,其中f′(x)为f(x)的导函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=cosx({\sqrt{3}sinx-cosx})$.
(1)求函数f(x)的最小正周期.
(2)记△ABC的内角A,B,C的对应边分别为a,b,c,且f(B)=$\frac{1}{2}$,a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知不等式a+2b+27>(m2-m)($\sqrt{a}$+2$\sqrt{b}$)对任意正数a,b都成立,则实数m的取值范围是(  )
A.(-3,2)B.(-2,3)C.(-1,2)D.(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB=-bcosC
(1)求角B的大小;
(2)若b=7,a+c=8,求a、c的值.

查看答案和解析>>

同步练习册答案