精英家教网 > 高中数学 > 题目详情
圆(x-3)2+y2=4与圆x2+(y-4)2=16的位置关系为(  )
A、内切B、外切C、相交D、相离
考点:圆与圆的位置关系及其判定
专题:直线与圆
分析:先求出两个圆的圆心和半径,再根据圆心距大于半径之差而小于半径之和,可得两个圆相交.
解答: 解:这两个圆的圆心分别为(3,0)、(0,4); 半径分别为2、4.
圆心距为5,大于半径之差而小于半径之和,可得两个圆相交,
故选:C.
点评:本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

回归直线方程的系数a,b的最小二乘法估计中,使函数Q(a,b)最小,Q函数指(  )
A、
n
i=1
(yi-a-bxi2
B、
n
i=1
|yi-a-bxi|
C、(y1-a-bx12
D、|y1-a-bx1|

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
ax3+
1
2
ax2+2a+1的图象经过四个象限,则实数a的取值范围是(  )
A、-
6
5
<a<
3
16
B、-
8
5
<a<-
3
16
C、-
8
5
<a<-
1
16
D、-
6
5
<a<-
3
16

查看答案和解析>>

科目:高中数学 来源: 题型:

cos9°cos36°-sin36°sin9°的值为(  )
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义“D”:△f(x)=f(x+1)-f(x),△2f(x)=△[△f(x)],△3f(x)=△[△2f(x)],…,比如f(x)=x2,则有△f(x)=2x+1,△2f(x)=2,现已知f(x)=x2011,则△2012f(x)=(  )
A、1×2×3×…×2011
B、1×2×3×…×2012
C、2012
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:平面FBC⊥平面ACFE;
(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,若矩阵M=(
-1a
b3
)所对应的变换把直线l:x+y=1变换为自身.
(Ⅰ)求实数a,b
(Ⅱ)若向量e1=(
1 
1 
),e2=(
1 
-1 
),试判断e1和e2是否为M的特征向量,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,已知an=
1
n(n+1)

(Ⅰ)求S1,S2,S3的值,猜想Sn的表达式;
(Ⅱ)请用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(1+mx)(1-x)n=a0+a1x+a2x2+…+an+1xn+1(m∈R,n∈N+),其中a1=a2=-3.
(Ⅰ)求m,n的值;
(Ⅱ)求f(x)展开式中所有含x的奇次幂的项的系数和.

查看答案和解析>>

同步练习册答案