精英家教网 > 高中数学 > 题目详情
如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:平面FBC⊥平面ACFE;
(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.
考点:二面角的平面角及求法,平面与平面垂直的判定
专题:空间位置关系与距离,空间角
分析:(1)由已知条件利用勾股定理求出BC⊥AC.由平面ACFE⊥平面ABCD,得到BC⊥平面ACFE.由此能证明平面ACFE⊥平面FBC.
(2)建立分别以直线CA,CB,CF为x轴,y轴,z轴的空间直角坐标系,令FM=λ(0≤λ≤
3
),利用向量法能求出cosθ的取值范围.
解答: (1)证明:在四边形ABCD中,
∵AB∥CD,AD=DC=CB=1,∠ABC=60°,∴AB=2,
∴AC2=AB2+BC2-2AB•BC•cos60°=3,
∴AB2=AC2+BC2,∴BC⊥AC.
∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,
BC?平面ABCD,∴BC⊥平面ACFE.
又∵BC?平面FBC,∴平面ACFE⊥平面FBC.…(5分)
(2)解:由(1)可建立分别以直线CA,CB,CF
为x轴,y轴,z轴的如图所示的空间直角坐标系,
令FM=λ(0≤λ≤
3
),
则C(0,0,0),A(
3
,0,0),B(0,1,0),M(λ,0,1),
AB
=(-
3
,1,0),
BM
=(λ,-1,1),
n
=(x,y,z)为平面MAB的一个法向量,
n
AB
=0
n
BM
=0
,得
-
3
x+y=0
λx-y+z=0

取x=1,则
n
=(1,
3
3
),
m
=(1,0,0)是平面FCB的一个法向量,
∴cosθ=cos<
n
m
>=
1
1+3+(
3
-λ)2×1

=
1
(
3
-λ)2+4
,…(10分)
∵0≤λ≤
3
,∴当λ=0时,cosθ有最小值
7
7

当λ=
3
时,cosθ有最大值
1
2

∴cosθ∈[
7
7
1
2
].…(12分)
点评:本题考查平面与平垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
lgx  , x>0
x+3 ,x≤0
,若f(a)=0,则实数a的值等于(  )
A、-3B、1
C、-3或1D、-1或3

查看答案和解析>>

科目:高中数学 来源: 题型:

F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,若在椭圆上存在点P,且满足|PF1|=2|PF2|,则椭圆的离心率的取值范围为(  )
A、[
1
3
,1)
B、(
1
3
,1)
C、(
2
3
,1)
D、(0,
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=
1
2
,an+1=1-
1
an
,那么a10=(  )
A、-1
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x-3)2+y2=4与圆x2+(y-4)2=16的位置关系为(  )
A、内切B、外切C、相交D、相离

查看答案和解析>>

科目:高中数学 来源: 题型:

为了检验“喜欢玩手机游戏与认为作业多”是否有关系,某班主任对班级的30名学生进行了调查,得到一个2×2列联表:
认为作业多 认为作业不多 合计
喜欢玩手机游戏 18 2
不喜欢玩手机游戏 6
合计 30
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为“喜欢玩手机游戏”与“认为作业多”有关系?
(Ⅲ)若从不喜欢玩手机游戏的人中随机抽取3人,则至少2人认为作业不多的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

我校高1201、1202、1203、1204四个班,从中随机抽取部分学生进行成绩统计,各班被抽取学生的人数恰好成等差数列,人数最少的班被抽取了24人,抽取的学生的测试成绩统计结果整理得如图所示频率分布直方图,其中分数在[120,130]的人数为6人.
(1)求抽取的总人数及各班被抽取的学生人数;
(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,-1),B(3,1),直线l过点C(0,
5
2
),且与AB平行,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:|x-1|+|x-3|>4.

查看答案和解析>>

同步练习册答案