精英家教网 > 高中数学 > 题目详情
F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,若在椭圆上存在点P,且满足|PF1|=2|PF2|,则椭圆的离心率的取值范围为(  )
A、[
1
3
,1)
B、(
1
3
,1)
C、(
2
3
,1)
D、(0,
1
3
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据椭圆的定义,求出|PF2|=
2a
3
,利用|PF2|的最小值为a-c,建立a,c的关系即可求出椭圆离心率的取值范围.
解答: 解:∵|PF1|=2|PF2|,|PF1|+|PF2|=2a,
∴3|PF2|=2a,
即|PF2|=
2a
3

∵|PF2|=
2a
3
≥a-c,
∴c
1
3
a

即e
1
3

∵椭圆的离心率e<1,
1
3
≤e<1,
故选:A
点评:本题主要考查椭圆离心率的求解,根据椭圆的定义求出a,c的关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

命题“?x0∈R使得x02+x0-2<0”的否定是(  )
A、“?x0∈R使得x02+x0-2≥0”
B、“?x0∈R使得x02+x0-2>0”
C、“?x0∈R使得x02+x0-2≥0”
D、“?x0∈R使得x02+x0-2>0”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在(1-2x)n的展开式中只有第5项的二项式系数最大且(1-2x)n=a0+a1x+a2x2+…+anxn,则|a1|+|a2|+…+|an|的值为(  )
A、39
B、38
C、39-1
D、38-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间[-
π
2
π
2
]上随机取一个数x,则事件“0≤sinx≤1”发生的概率为(  )
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
ax3+
1
2
ax2+2a+1的图象经过四个象限,则实数a的取值范围是(  )
A、-
6
5
<a<
3
16
B、-
8
5
<a<-
3
16
C、-
8
5
<a<-
1
16
D、-
6
5
<a<-
3
16

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在R上可导,且(x-1)•f′(x)>0,则下列结论正确的是(  )
A、x=1一定是函数f(x)的极大值点
B、x=1一定是函数f(x)的极小值点
C、x=1不是函数f(x)的极值点
D、x=1不一定是函数f(x)的极值点

查看答案和解析>>

科目:高中数学 来源: 题型:

cos9°cos36°-sin36°sin9°的值为(  )
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:平面FBC⊥平面ACFE;
(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2+(p+2)x+1=0,x∈R},且A⊆负实数,求实数p的取值范围.

查看答案和解析>>

同步练习册答案