精英家教网 > 高中数学 > 题目详情
数列{an}的前n项和记为Sn,已知an=
1
n(n+1)

(Ⅰ)求S1,S2,S3的值,猜想Sn的表达式;
(Ⅱ)请用数学归纳法证明你的猜想.
考点:数学归纳法,数列递推式
专题:综合题,点列、递归数列与数学归纳法
分析:(1)根据题设条件,可求S1,S2,S3的值,猜想Sn的表达式.
(2)利用数学归纳法的证明步骤对这个猜想加以证明.
解答: 解:(Ⅰ)∵an=
1
n(n+1)

∴S1=
1
2
,S2=
2
3
,S3=
3
4

猜想Sn=
n
n+1

(Ⅱ)①n=1时,S1=
1
2
成立;
②假设n=k时,成立,即Sk=
k
k+1

则当n=k+1时,Sk+1=Sk+ak+1=
k
k+1
+
1
(k+1)(k+2)
=
k+1
(k+1)+1

即当n=k+1时,结论也成立
综上①②知,Sn=
n
n+1
点评:本题主要考查了数列的递推式,考查数学归纳法.数列的递推式是高考中常考的题型,涉及数列的通项公式,求和问题,数列与不等式的综合等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0),F是左焦点,A、B分别是虚轴上、下两端,C是它的左顶点,直线AC与直线FB相交于点D,若双曲线的离心率为
2
,则∠BDA的余弦值等于(  )
A、
3
2
B、
2
3
-
6
6
C、
1
2
D、
3
-
2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

圆(x-3)2+y2=4与圆x2+(y-4)2=16的位置关系为(  )
A、内切B、外切C、相交D、相离

查看答案和解析>>

科目:高中数学 来源: 题型:

我校高1201、1202、1203、1204四个班,从中随机抽取部分学生进行成绩统计,各班被抽取学生的人数恰好成等差数列,人数最少的班被抽取了24人,抽取的学生的测试成绩统计结果整理得如图所示频率分布直方图,其中分数在[120,130]的人数为6人.
(1)求抽取的总人数及各班被抽取的学生人数;
(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的几何体中,ABCD为平行四边形,∠ACB=
π
2
,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.
(1)在线段AD上是否存在点M,使GM∥平面ABFE?并说明理由;
(2)若AC=BC=2AE,求二面角A-BF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,-1),B(3,1),直线l过点C(0,
5
2
),且与AB平行,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是
3
,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x

(Ⅰ)写出函数f(x)的导函数,并用定义证明;
(Ⅱ)求函数f(x)图象在点P(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三实验班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如下,据此解答如下问题:

(Ⅰ)求考试分数[110,120)之间的人数,并依据茎叶图指出该组数据的中位数是多少?
(Ⅱ)若要从分数在[110,130)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份的分数在[110,120)之间的概率.

查看答案和解析>>

同步练习册答案