精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x2cos$\frac{πx}{2}$,在数列{an}中,an=f(n)+f(n+1)(n∈N*),则数列{an}的前80项之和S80=6560.

分析 由已知可得:a2k-1+a2k=2f(2k)=(-1)k×8k2.即可得出.

解答 解:a2k=f(2k)+f(2k+1)=(2k)2cos(kπ)+$(2k+1)^{2}cos\frac{2k+1}{2}π$=(-1)k(2k)2,k∈N*
a2k-1=f(2k-1)+f(2k)=$(2k-1)^{2}cos\frac{2k-1}{2}π$+(2k)2cos(kπ)=(-1)k(2k)2,k∈N*
∴a2k-1+a2k=2f(2k)=(-1)k×8k2
∴数列{an}的前80项之和S80=8(-12+22-32+42+…-392+402
=8(1+2+…+39+40)
=8×$\frac{40×(1+40)}{2}$
=6560.
故答案为:6560.

点评 本题考查了等差数列的通项公式与前n项和公式、“分组求和”方法、三角函数求值,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.将两颗骰子各掷一次,设事件A=“两个点数不相同”,B=“出现一个5点或6点”,则概率P(A|B)等于(  )
A.$\frac{10}{11}$B.$\frac{9}{10}$C.$\frac{17}{19}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知全集U=R,A={y|y=x2-6x+10},B={y|y=-x2-2x+8},则∁U(A∩B)=(-∞,1)∪(9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.(a+b)9的展开式中第6项二项式系数为(  )
A.C${\;}_{9}^{6}$B.-C${\;}_{9}^{6}$C.C${\;}_{9}^{5}$D.-C${\;}_{9}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={$\frac{1}{2015}$,$\frac{1}{2014}$,$\frac{1}{2013}$,…,$\frac{1}{2}$,1,2,…,2013,2014,2015},在映射f:x→$\frac{{x}^{2}}{1+{x}^{2}}$的作用下得到集合B.求集合B中所有元素之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-(a+1)x+2(a∈R).
(I)当a=2时,解不等式f(x)>1;
(Ⅱ)若对任意x∈[-1,3],都有f(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.是否存在一个等差数列{an},使得对任何自然数n,等式:a1+2a2+3a3+…+nan=n(n+1)(n+2)都成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x1,x2,…,xn的方差为2,则2x1+3,2x2+3,…,2xn+3的标准差为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.f(x)=ax3+bx2+cx的极值点为±1,且f(-1)=-1,则a+b+c的值为(  )
A.1B.-1C.2D.-2

查看答案和解析>>

同步练习册答案