分析 由已知可得:a2k-1+a2k=2f(2k)=(-1)k×8k2.即可得出.
解答 解:a2k=f(2k)+f(2k+1)=(2k)2cos(kπ)+$(2k+1)^{2}cos\frac{2k+1}{2}π$=(-1)k(2k)2,k∈N*.
a2k-1=f(2k-1)+f(2k)=$(2k-1)^{2}cos\frac{2k-1}{2}π$+(2k)2cos(kπ)=(-1)k(2k)2,k∈N*.
∴a2k-1+a2k=2f(2k)=(-1)k×8k2.
∴数列{an}的前80项之和S80=8(-12+22-32+42+…-392+402)
=8(1+2+…+39+40)
=8×$\frac{40×(1+40)}{2}$
=6560.
故答案为:6560.
点评 本题考查了等差数列的通项公式与前n项和公式、“分组求和”方法、三角函数求值,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{10}{11}$ | B. | $\frac{9}{10}$ | C. | $\frac{17}{19}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | C${\;}_{9}^{6}$ | B. | -C${\;}_{9}^{6}$ | C. | C${\;}_{9}^{5}$ | D. | -C${\;}_{9}^{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com