精英家教网 > 高中数学 > 题目详情
19.f(x)=ax3+bx2+cx的极值点为±1,且f(-1)=-1,则a+b+c的值为(  )
A.1B.-1C.2D.-2

分析 由函数f(x)=ax3+bx2+cx在x=±1处取得极值,求导,可得±1是f′(x)=0的两根,且f(-1)=-1,解方程组即可求得,a,b,c的值,相加即可.

解答 解:(Ⅰ)f′(x)=3ax2+2bx+c
依题意$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c=0}\end{array}\right.$⇒$\left\{\begin{array}{l}{b=0}\\{3a+c=0}\end{array}\right.$,
又f(-1)=-a+b-c=-1,
∴c=$\frac{3}{2}$,b=0,a=-$\frac{1}{2}$,
∴a+b+c=1,
故选:A.

点评 本题考查利用导数研究函数的单调性和极值问题,体现了数形结合和转化的思想,考查了学生灵活应用知识分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x2cos$\frac{πx}{2}$,在数列{an}中,an=f(n)+f(n+1)(n∈N*),则数列{an}的前80项之和S80=6560.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N的距离的$\sqrt{3}$倍.
(1)求曲线E的方程;
(2)已知m≠0,设直线l:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点,若CD的斜率为-1时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)在x=c处的导数存在,则“c为函数f(x)的极值点”是“f′(c)=0”成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=-x(x-2)2的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=\frac{m}{2}{x^2}-x-lnx$.
(Ⅰ)求曲线C:y=f(x)在x=1处的切线l的方程;
(Ⅱ)若函数f(x)在定义域内是单调函数,求m的取值范围;
(Ⅲ)当m>-1时,(Ⅰ)中的直线l与曲线C:y=f(x)有且只有一个公共点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,某几何体的三视图如图所示,则此几何体的体积为64-$\frac{32π}{3}$.(单位:cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=2ln(x+2)-(x+1)2,g(x)=k(x+1).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)当k=2时,求证:对于?x>-1,f(x)<g(x)恒成立;
(Ⅲ)若存在x0>-1,使得当x∈(-1,x0)时,恒有f(x)>g(x)成立,试求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax3+bx2+cx+d在O、A两点处取得极值,其中O是坐标原点,A在曲线y=xsinx(x∈[$\frac{π}{3}$,$\frac{2π}{3}$])上,则曲线y=f(x)的切线斜率的最大值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案