精英家教网 > 高中数学 > 题目详情
已知函数f(x)=3x2+a,g(x)=2ax+1,a∈R.
(1)证明函数H(x)=f(x)-g(x)恒有两个不同的零点;
(2)若函数f(x)在(0,2)上无零点,请讨论函数y=|g(x)|在(0,2)上的单调性.
分析:(1)根据函数H(x)=f(x)-g(x)=3x2 -2ax+a-1 的判别式△>0,可得二次函数H(x)=f(x)-g(x)恒有两个不同的零点.
(2)由题意可得f(0)=a≥0,或 f(2)=12+a≤0,解得a≥0,或 a≤-12.根据函数y=|g(x)|=|2ax+1|,分①当a=0时、②当a>0时、③当a≤-12三种
情况,分别研究函数的单调性.
解答:解:(1)证明:∵函数H(x)=f(x)-g(x)=3x2 -2ax+a-1 的判别式△=4a2-12a+12=4[(x-
3
2
)
2
+
3
4
]>0,
∴函数H(x)=f(x)-g(x)恒有两个不同的零点.
(2)若函数f(x)在(0,2)上无零点,结合f(x)在(0,2)上单调递增,
可得f(0)=a≥0,或 f(2)=12+a≤0,解得a≥0,或 a≤-12.
∵函数y=|g(x)|=|2ax+1|,
①故当a=0时,|g(x)|=1 在(0,2)上没有单调性.
②当a>0时,函数y=|g(x)|=|2ax+1|的零点为x=-
1
2a
<0,函数y=|g(x)|在(0,2)上单调递增.
③当a≤-12时,函数y=|g(x)|=|2ax+1|的零点为x=-
1
2a
∈(0,
1
24
],函数y=|g(x)|在(0,-
1
2a
)上单调递减,在(-
1
2a
,2)上是增函数.
点评:本题主要考查函数的零点与方程的根的关系,函数的单调性的判断和证明,带由绝对值的函数,体现了分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3•2x-1,则当x∈N时,数列{f(n+1)-f(n)}(  )
A、是等比数列B、是等差数列C、从第2项起是等比数列D、是常数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x丨m<x-m<9}.
(1)若m=0,求A∩B,A∪B;
(2)若A∩B=B,求所有满足条件的m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
a-1
(a≠1)在区间(0,4]上是增函数,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2log2x,g(x)=log2x.
(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]•g(x)的值域;
(2)如果对任意的x∈[1,4],不等式f(x2)•f(
x
)>k•g(x)
恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案