精英家教网 > 高中数学 > 题目详情
14.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n=(  )
A.13B.12C.10D.9

分析 根据分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.

解答 解:由分层抽样得$\frac{n}{120+80+60}$=$\frac{3}{60}$,
解得n=13,
故选:A.

点评 本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知:$\overrightarrow{AB}$=3($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),$\overrightarrow{BC}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,则下列关系一定成立的是(  )
A.A,B,C三点共线B.A,B,D三点共线C.C,A,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”
B.若命题p:?x∈R,x2-2x-1>0,则命题¬p:?x∈R,x2-2x-1<0
C.命题“若α>β,则2α>2β”的逆否命题为真命题
D.“x=-1”是x2-5x-6=0的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex,x∈R.
(Ⅰ)求函数f(x)在x=1处的切线方程;
(Ⅱ)若m>0,讨论函数$g(x)=\frac{f(x)}{x^2}-m$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{2^{x-1}}+1,0≤x≤1\\{log_{\frac{1}{2}}}\frac{x}{4},1<x<2\end{array}$,设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,则Sn=3(1-$\frac{1}{{3}^{n}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=sinωx-2$\sqrt{3}$sin2$\frac{ωx}{2}$+$\sqrt{3}$(ω>0),其图象与x轴的相邻两个交点的距离为$\frac{π}{2}$,则f(x)在区间[0,$\frac{π}{2}$]上的最小值为(  )
A.-2B.2C.-$\sqrt{3}$D.-2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,ccosB-(2a-b)cosC=0
(Ⅰ)求角C的大小;
(Ⅱ)设函数f(x)=$sin\frac{x}{2}•cos\frac{x}{2}+{cos^2}\frac{x}{2}$,当f(B)=$\frac{{\sqrt{2}+1}}{2}$时,若a=$\sqrt{6}+\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=tant}\\{y=1+ktant}\end{array}\right.$(t为参数,t≠nπ+$\frac{π}{2}$,n∈Z),以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,曲线C的极坐标方程为ρ=ρcos2θ+4cosθ.
(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)若直线l和曲线C相切,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在棱长为2的正方体ABCD-A1B1C1D1中,点E是棱AA1的中点,则异面直线DE与BC所成的角的余弦值是$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

同步练习册答案