精英家教网 > 高中数学 > 题目详情
9.已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{2^{x-1}}+1,0≤x≤1\\{log_{\frac{1}{2}}}\frac{x}{4},1<x<2\end{array}$,设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,则Sn=3(1-$\frac{1}{{3}^{n}}$).

分析 通过题意当x∈[0,2)时f(x)的解析式可知f(x)在[0,2)上的最大值为a1=2,进而利用函数f(x)满足f(x)=3f(x+2),可知函数向右平移2个单位,最大值变为原来的$\frac{1}{3}$,计算即得结论.

解答 解:∵当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{2^{x-1}}+1,0≤x≤1\\{log_{\frac{1}{2}}}\frac{x}{4},1<x<2\end{array}$,
∴f(x)在[0,2)上的最大值为a1=f(1)=2,
又∵函数f(x)满足f(x)=3f(x+2),
∴f(x+2)=$\frac{1}{3}$f(x),即函数向右平移2个单位,最大值变为原来的$\frac{1}{3}$,
∴an=2•$\frac{1}{{3}^{n-1}}$,
∴Sn=2•$\frac{1-\frac{1}{{3}^{n}}}{1-\frac{1}{3}}$=3(1-$\frac{1}{{3}^{n}}$),
故答案为:3(1-$\frac{1}{{3}^{n}}$).

点评 本题考查数列的求和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ,在平面直角坐标系xOy中,直线l经过点P(3,4),斜率为1.
(1)写出圆C的直角坐标方程和直线l的参数方程;
(2)设直线l与圆C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.罐中装有编号1~n的小球n个,从中摸出一个,记下球号后放回,摸球m次时,依次记录摸到的球号,最多得到多少种球号的排列?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输出S的值为-18,则输入的S值为(  )
A.-4B.-7C.-22D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和为Sn,点($\sqrt{{a}_{n}}$,Sn)在曲线y=2x2-2上.
(1)求证:数列{an}是等比数列;
(2)设数列{bn}满足bn=$\frac{1}{lo{g}_{4}{a}_{n}•lo{g}_{4}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人,60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取了3名,则n=(  )
A.13B.12C.10D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点,且|F1F2|=2,若P是该双曲线右支上的一点,且满足|PF2|=|F1F2|,则△PF1F2面积的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知边长为6的正三角形ABC,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC},\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AC}$,AD与BE交点P,则$\overrightarrow{PB}•\overrightarrow{PD}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+6ax+1,g(x)=8a2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若a≥1,则对任意x1,x2∈(0,+∞),x1≠x2,有$\frac{{h({x_2})-h({x_1})}}{{{x_2}-{x_1}}}>14$.

查看答案和解析>>

同步练习册答案