| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 利用双曲线的定义求得|PF1|,作PF1边上的高AF2,由A为中点,可知AF1的长度,进而利用勾股定理求得AF2,运用基本不等式可得△PF1F2的面积的最大值.
解答
解:由题意可得|PF2|=|F1F2|=2,
由双曲线的定义可得,|PF1|-|PF2|=2a,
即为|PF1|=2+2a,
过F2作AF2⊥PF1,垂足为A,
由等腰三角形的性质可得A为中点,
由勾股定理可得|AF2|=$\sqrt{{2}^{2}-(1+a)^{2}}$,
即有△PF1F2面积为$\frac{1}{2}$|AF2|•|PF1|=$\frac{1}{2}$(2+2a)•$\sqrt{{2}^{2}-(1+a)^{2}}$
=$\sqrt{(1+a)^{2}}$•$\sqrt{{2}^{2}-(1+a)^{2}}$≤$\frac{(1+a)^{2}+4-(1+a)^{2}}{2}$=2,
当且仅当(1+a)2=4-(1+a)2,即a=$\sqrt{2}$-1时,取得等号.
则△PF1F2面积的最大值是2.
故选:C.
点评 本题考查双曲线方程的定义和方程及性质,考查三角形面积的最值的求法,注意运用勾股定理和基本不等式,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com