精英家教网 > 高中数学 > 题目详情
10.已知数列{bn}的前n项和${B_n}=\frac{{3{n^2}-n}}{2}$.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{an}的通项${a_n}=[{b_n}+{(-1)^n}]•{2^n}$,求数列{an}的前n项和Tn

分析 (I)利用递推关系即可得出;
(II)${a_n}=[{b_n}+{(-1)^n}]•{2^n}$=(3n-2)•2n+(-1)n•2n.设数列{(3n-2)•2n}的前n项和为An,利用“错位相减法”与等比数列的前n项和公式即可得出;再利用等比数列的前n项和公式即可得出.

解答 解::(I)∵数列{bn}的前n项和${B_n}=\frac{{3{n^2}-n}}{2}$,∴b1=B1=$\frac{3-1}{2}$=1;
当n≥2时,bn=Bn-Bn-1=$\frac{3{n}^{2}-n}{2}$-$\frac{3(n-1)^{2}-(n-1)}{2}$=3n-2,当n=1时也成立.
∴bn=3n-2.
(II)${a_n}=[{b_n}+{(-1)^n}]•{2^n}$=(3n-2)•2n+(-1)n•2n
设数列{(3n-2)•2n}的前n项和为An
则An=2+4×22+7×23+…+(3n-2)•2n
2An=22+4×23+…+(3n-5)•2n+(3n-2)•2n+1
∴-An=2+3(22+23+…+2n)-(3n-2)•2n+1=$3×\frac{2×({2}^{n}-1)}{2-1}$-4-(3n-2)•2n+1=(5-3n)•2n+1-10,
∴An=(3n-5)•2n+1+10.
数列{(-1)n•2n}的前n项和=$\frac{-2[1-(-2)^{n}]}{1-(-2)}$=$-\frac{2}{3}$[1-(-2)n].
∴数列{an}的前n项和Tn=(3n-5)•2n+1+10$-\frac{2}{3}$[1-(-2)n].

点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“错位相减法”、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.罐中装有编号1~n的小球n个,从中摸出一个,记下球号后放回,摸球m次时,依次记录摸到的球号,最多得到多少种球号的排列?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点,且|F1F2|=2,若P是该双曲线右支上的一点,且满足|PF2|=|F1F2|,则△PF1F2面积的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知边长为6的正三角形ABC,$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC},\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AC}$,AD与BE交点P,则$\overrightarrow{PB}•\overrightarrow{PD}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{x}{\sqrt{lo{g}_{\frac{1}{2}}(4x-3)}}$的定义域为(  )
A.($\frac{3}{4}$,+∞)B.(-∞,$\frac{3}{4}$)C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-1,x≤0\\ f(x-1)+1,x>0\end{array}\right.$设方程f(x)=x在区间(0,n]内所有实根的和为sn.则数列$\left\{{\frac{1}{s_n}}\right\}$的前n项和Tn=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=\sqrt{3}sinx+sin(\frac{π}{2}+x)$的一条对称轴是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{2π}{3}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+6ax+1,g(x)=8a2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若a≥1,则对任意x1,x2∈(0,+∞),x1≠x2,有$\frac{{h({x_2})-h({x_1})}}{{{x_2}-{x_1}}}>14$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在正六边形ABCDEF中,|$\overrightarrow{AC}$+$\overrightarrow{AE}$|=6,则$\overrightarrow{AF}$•$\overrightarrow{FB}$等于(  )
A.-6B.6C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

同步练习册答案