分析 由题意作图辅助,从而可得点P是正三角形ABC的中心,从而可求平面向量的数量积.
解答
解:由题意作图如右图,
∵$\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC},\overrightarrow{AE}=\frac{1}{2}\overrightarrow{AC}$,
∴D,E分别为线段BC,AC的中点,
∴点P是正三角形ABC的中心,
∴|$\overrightarrow{PB}$|=$\frac{2}{3}$•|BE|=$\frac{2}{3}$•$\frac{\sqrt{3}}{2}$•|AB|=2$\sqrt{3}$,
|$\overrightarrow{PD}$|=$\frac{1}{2}$|BP|=$\sqrt{3}$,
且∠BPD=$\frac{π}{3}$,
故$\overrightarrow{PB}•\overrightarrow{PD}$=|$\overrightarrow{PB}$||$\overrightarrow{PD}$|cos$\frac{π}{3}$=6×$\frac{1}{2}$=3,
故答案为:3.
点评 本题考查了平面向量的应用及数形结合的思想应用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com