| A. | $x=\frac{π}{6}$ | B. | $x=\frac{π}{3}$ | C. | $x=\frac{2π}{3}$ | D. | $x=\frac{5π}{6}$ |
分析 由三角函数公式化简可得f(x)=2sin(x+$\frac{π}{6}$),由三角函数的对称性可得.
解答 解:由三角函数公式化简可得f(x)=$\sqrt{3}$sinx+sin($\frac{π}{2}$+x)
=$\sqrt{3}$sinx+cosx=2($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=2sin(x+$\frac{π}{6}$),
由x+$\frac{π}{6}$=kπ+$\frac{π}{2}$可x=kπ+$\frac{π}{3}$,k∈Z.
结合选项可得当k=0时,函数的一条对称轴为x=$\frac{π}{3}$.
故选:B.
点评 本题考查三角函数恒等变换,涉及三角函数的对称性,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{8}$ | B. | 4 | C. | $\frac{40}{27}$ | D. | 40 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com