精英家教网 > 高中数学 > 题目详情
11.如图,圆柱O-O1中,AB为下底面圆O的直径,CD为上底面圆O1的直径,AB∥CD,点 E、F在圆O上,且AB∥EF,且AB=2,AD=1.
(Ⅰ)求证:平面ADF⊥平面CBF;
(Ⅱ)若DF与底面所成角为$\frac{π}{4}$,求几何体EF-ABCD的体积.

分析 (Ⅰ)利用已知条件证明BF⊥平面ADF,然后证明平面ADF⊥平面CBF.
(Ⅱ)推出$∠AFD=\frac{π}{4}$,求出四棱锥F-ABCD的高为$\frac{{\sqrt{3}}}{2}$,底面面积SABCD=2,求出体积,然后之后求解几何体EF-ABCD的体积.

解答 (Ⅰ)证明:由已知,AF⊥BF,AD⊥BF,且AF∩AD=A,故BF⊥平面ADF,
所以平面ADF⊥平面CBF.…(5分)
(Ⅱ)解:因AD垂直于底面,若DF与底面所成角为$\frac{π}{4}$,则$∠AFD=\frac{π}{4}$,故AF=1,
则四棱锥F-ABCD的高为$\frac{{\sqrt{3}}}{2}$,又SABCD=2,${V_{F-ABCD}}=\frac{1}{3}×\frac{{\sqrt{3}}}{2}×2=\frac{{\sqrt{3}}}{3}$;
三棱锥C-BEF的高为1,而△BEF中,BE=BF=1,∠BEF=120°,
所以${S_{BEF}}=\frac{{\sqrt{3}}}{4}$,则${V_{C-BEF}}=\frac{1}{3}×1×\frac{{\sqrt{3}}}{4}=\frac{{\sqrt{3}}}{12}$,
所以几何体EF-ABCD的体积为$\frac{{5\sqrt{3}}}{12}$.…(12分)

点评 本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,几何体的体积的求法,考查转化思想以及空间想象能力计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点,且|F1F2|=2,若P是该双曲线右支上的一点,且满足|PF2|=|F1F2|,则△PF1F2面积的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$f(x)=\sqrt{3}sinx+sin(\frac{π}{2}+x)$的一条对称轴是(  )
A.$x=\frac{π}{6}$B.$x=\frac{π}{3}$C.$x=\frac{2π}{3}$D.$x=\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+6ax+1,g(x)=8a2lnx+2b+1,其中a>0.
(Ⅰ)设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同,用a表示b,并求b的最大值;
(Ⅱ)设h(x)=f(x)+g(x),证明:若a≥1,则对任意x1,x2∈(0,+∞),x1≠x2,有$\frac{{h({x_2})-h({x_1})}}{{{x_2}-{x_1}}}>14$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若存在x0∈(0,1),使得(2-x0)e${\;}^{a{x}_{0}}$≥2+x0,则实数a的取值范围是(  )
A.(ln3,+∞)B.(1,+∞)C.($\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={f(x)|f(x)=xlnx+a}和B={h(x)|h(x)=-x2-$\frac{4}{\sqrt{e}}$x-$\frac{5}{e}$}的交集有且只有2个子集.
(1)求实数a的值;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x2-1)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知全集U={0,1,2,3,4,5,6},集合A={0,1,3},集合B={2,6},则(∁UA)∩(∁UB)为(  )
A.{5,6}B.{4,5}C.{0,3}D.{2,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在正六边形ABCDEF中,|$\overrightarrow{AC}$+$\overrightarrow{AE}$|=6,则$\overrightarrow{AF}$•$\overrightarrow{FB}$等于(  )
A.-6B.6C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,则满足条件|m$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{33}$的所有实数m之和为(  )
A.-$\frac{3}{4}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.-$\frac{1}{4}$

查看答案和解析>>

同步练习册答案