精英家教网 > 高中数学 > 题目详情
5.以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=6cosθ,在平面直角坐标系xOy中,直线l经过点P(3,4),斜率为1.
(1)写出圆C的直角坐标方程和直线l的参数方程;
(2)设直线l与圆C相交于A,B两点,求|PA|•|PB|的值.

分析 (1)对ρ=6cosθ两边平方,根据极坐标与直角坐标的对应关系得出圆C的直角坐标方程,根据直线参数方程的几何意义得出参数方程;
(2)将直线的参数方程代入圆C的普通方程,利用根与系数的关系和参数的几何意义得出.

解答 解;(1)∵ρ=6cosθ,∴ρ2=6ρcosθ,∴圆C的直角坐标方程为x2+y2=6x,即(x-3)2+y2=9.
∵直线l经过点P(3,4),斜率为1,∴直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(2)将$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)代入(x-3)2+y2=9得t2+4$\sqrt{2}$t+7=0,
∴|PA|•|PB|=|t1•t2|=7.

点评 本题考查了极坐标方程,参数方程与直角坐标方程的转化,直线参数方程的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列关于实数a,b的不等式中,不恒成立的是(  )
A.a2+b2≥2abB.a2+b2≥-2abC.${({\frac{a+b}{2}})^2}≥ab$D.${({\frac{a+b}{2}})^2}≥-ab$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.若a,b∈R,则“ab≠0”是“a≠0”的充分不必要条件
C.命题“?x0∈R,x02+x0+1<0”的否定是“?x∈R,x2+x+1>0”
D.若“p且q”为假,则p,q全是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若数列{an}满足an=qn(q≠0,n∈N*)给出以下四个命题:①{a2n}是等比数列;②{lgan}是等差数列;③{2${\;}^{{a}_{n}}$}是等比数列;④{lgan2}是等差数列.其中正确的有(  )
A.①③B.②④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.E、F是四边形ABCD的对角线AC、BD的中点,已知$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,求向量$\overrightarrow{EF}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知:$\overrightarrow{AB}$=3($\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$),$\overrightarrow{BC}$=$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,$\overrightarrow{CD}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,则下列关系一定成立的是(  )
A.A,B,C三点共线B.A,B,D三点共线C.C,A,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinαtanα≥0,则α的取值集合为{α|2kπ-$\frac{π}{2}$<α<2kπ+$\frac{π}{2}$或α=(2k+1)π(k∈Z)}..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.tan67°30′-tan22°30′的值为(  )
A.4B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在[0,+∞)上的函数f(x)满足f(x)=3f(x+2),当x∈[0,2)时,f(x)=$\left\{\begin{array}{l}{2^{x-1}}+1,0≤x≤1\\{log_{\frac{1}{2}}}\frac{x}{4},1<x<2\end{array}$,设f(x)在[2n-2,2n)上的最大值为an(n∈N*),且{an}的前n项和为Sn,则Sn=3(1-$\frac{1}{{3}^{n}}$).

查看答案和解析>>

同步练习册答案