精英家教网 > 高中数学 > 题目详情
20.若(x2+1)(x-2)9=a0+a1x+a2x2+…+a11x11,则a1+a2+a3…+a11的值为510.

分析 用赋值法,在所给的等式中,分别令x=0和1,即可求出对应的值.

解答 解:在(x2+1)(x-2)9=a0+a1x+a2x2+…+a11x11中,
令x=0,得(0+1)×(0-2)9=a0,即a0=-512;
令x=1,得(1+1)×(1-2)9=a0+a1+a2+…+a11=-2,
∴a1+a2+a3…+a11=-2-(-512)=510.
故答案为:510.

点评 本题主要考查了二项式定理的应用问题,是给变量赋值的计算问题,关键是根据要求的结果,选择合适的数值代入,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知圆C1:(x+1)2+y2=1和圆C2:(x-4)2+y2=4.
(1)过点P(-2,-2)引圆C2的两条割线l1和l2,直线l1和l2被圆C2截得的弦的中点分别为M,N.求过点P,M,N,C2的圆被直线PC1所截的弦长;
(2)过圆C2上任一点Q(x0,y0)作圆C1的两条切线,设两切线分别与y轴交于点S和T.求线段ST长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.投掷两枚骰子,则点数之和为5的概率等于(  )
A.$\frac{1}{6}$B.$\frac{1}{18}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知正三棱柱ABC-A1B1C1底面边长为2$\sqrt{3}$,高为3,圆O是等边三角形ABC的内切圆,点P是圆O上任意一点,则三棱锥P-A1B1C1的外接球的表面积为25π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.用反证法证明某命题时,对结论:“自然数a,b,c中至多有一个偶数”正确的反设应为a,b,c中至少有两个偶数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①在△ABC中,若A<B,则sinA<sinB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③函数y=|tan2x|的最小正周期为$\frac{π}{2}$;
④存在实数x,使2sin(2x-$\frac{π}{6}$)-1=$\frac{3}{2}$成立;
其中正确的命题为①③(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“?x∈R,x2>0”为真命题
C.命题“若x=y,则cosx=cosy”的逆否命题为真命题
D.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知m,n,表示不同直线,α,β表示不同平面.则下列结论正确的是(  )
A.m∥α且n∥α,则m∥nB.m∥α且 m∥β,则α∥β
C.α∥β且 m?α,n?β,则m∥nD.α∥β且 a?α,则a∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数c是a,b的等差中项,则直线l:ax-by+c=0被圆x2+y2=9所截得弦长的取值范围为$[\sqrt{34},6]$.

查看答案和解析>>

同步练习册答案