精英家教网 > 高中数学 > 题目详情
给出下列命题(其中a、b、c为不相重合的直线,α为平面)
①若b∥a,c∥a,则b∥c;            
②若b⊥a,c⊥a,则b∥c;
③若a∥α,b∥α,则a∥b;
④若a⊥α,b⊥α,则a∥b.写出所有正确命题的序号
 
考点:空间中直线与平面之间的位置关系,命题的真假判断与应用
专题:空间位置关系与距离
分析:利用空间直线与直线、直线与平面平行与垂直的性质对①②③④四个选项逐一分析即可.
解答: 解:①由公理4知,b∥a,c∥a,则b∥c,正确;
②若b?α,c?α,b∩c=A,a⊥α,满足b⊥a,c⊥a,但b与c不平行,故②错误;
③若a∥α,b∥α,则a∥b或a与b相交,或a与b异面,故③错误;
④若a⊥α,b⊥α,则a∥b,这是线面垂直的性质,故④正确.
综上所述,所有正确命题的序号为①④.
故答案为:①④.
点评:本题考查命题的真假判断与应用,着重考查空间直线与直线、直线与平面平行与垂直的性质,考查空间想象能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知离心率为
3
2
的椭圆C,其长轴的端点A1,A2恰好是双曲线
x2
3
-y2=1的左右焦点,点P是椭圆C上不同于A1,A2的任意一点,设直线PA1,PA2的斜率分别为k1,k2
(1)求椭圆C的标准方程;
(2)试判断乘积“k1•k2”的值是否与点P的位置有关,并证明你的结论;
(3)当k1=
1
2
,在椭圆C上求点Q,使该点到直线PA2的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
,则目标函数z=x+2y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-cos2x,x∈[
π
8
π
6
],若?x1∈[
π
8
π
6
],?x2∈[
π
8
π
6
],x1≠x2
f(x2)-f(x1)
x2-x1
<0,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若A,B是锐角△ABC的两内角,则有sinA>cosB;
②在同一坐标系中,函数y=sinx与y=lgx的交点个数为2个;
③如果
sinα-2cosα
3sinα+5cosα
=-5,那么tan α的值为-
23
16

④存在实数x,使得等式sinx+cosx=
3
2
成立;
⑤若0<x≤1,则
sin2x
x2
sinx
x

其中正确的命题为
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

①?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数;
②函数f(x)=ex+x2-2的零点有2个; 
③已知函数y=f(x)和函数y=log2(x+1)的图象关于直线x-y=0 对称,则函数y=f(x)的解析式为y=2x-1;
④?m∈R,使f(x)=(m-1)•xm2-4m+3是幂函数,且在(0,+∞)上递减;
上述命题中是真命题的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:其中正确的个数是
 

①命题“?x∈R,2x≤0”的否定是“?x∈R,2x>0”;
②关于x的不等式a<sin2x+
2
sin2x
恒成立,则a的取值范围是a<3;
③对于函数f(x)=
ax
1+|x|
(a∈R且a≠0)
,则有当a=1时,?k∈(1,+∞),使得函数g(x)=f(x)-kx在R上有三个零点;
1
0
1-x2
e
1
1
x
dx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-1,1),
b
=(3,m),若
a
∥(
a
+
b
).则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y满足
x≥0
y≥0
x-y+1≥0
2x-y-1≤0
,实数z=3x-y的最小值为(  )
A、-1
B、0
C、
3
2
D、3

查看答案和解析>>

同步练习册答案