精英家教网 > 高中数学 > 题目详情
若实数x,y满足
x-y+1≥0
x+y≥0
x≤0
,则目标函数z=x+2y的最大值是
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
设z=x+2y得y=-
1
2
x+
z
2

平移直线y=-
1
2
x+
z
2
,由图象可知当直线y=-
1
2
x+
z
2
经过点A(0,1)时,
直线y=-
1
2
x+
z
2
的截距最大,此时z最大,
此时z=2,
故答案为:2.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知过点P(2,-1)的直线l交椭圆
x 2
8
+
y 2
4
=1
于M、N两点,B(0,2)是椭圆的一个顶点,若线段MN的中点恰为点P.
(Ⅰ)求直线l的方程;
(Ⅱ)求△BMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1.
(Ⅰ)若过点C1(-1,0)的直线l被圆C2截得的弦长为
6
5
,求直线l的方程;
(Ⅱ)圆D是以1为半径,圆心在圆C3:(x+1)2+y2=9上移动的动圆,若圆D上任意一点P分别作圆C1的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围;
(Ⅲ)若动圆C同时平分圆C1的周长、圆C2的周长,则动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=2px(p>0)的焦点为F,抛物线C上点M的横坐标为2,且|MF|=3.
(1)求抛物线C的方程;
(2)过焦点F作两条相互垂直的直线,分别与抛物线C交于M、N和P、Q四点,求四边形MPNQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在椭圆
x2
4
+y2
=1中,F1、F2为椭圆的左右焦点,过F1和F2分别作直线F1A和F2B,使得F1A∥F2B,连接F2A和F1B,两直线交于点P,证明:PF1+PF2的定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线x2-
y2
b2
=1(b>0)的一个焦点到其渐近线的距离是2,则b=
 
;此双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线f(x)=
ex
x-1
在x=0处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题(其中a、b、c为不相重合的直线,α为平面)
①若b∥a,c∥a,则b∥c;            
②若b⊥a,c⊥a,则b∥c;
③若a∥α,b∥α,则a∥b;
④若a⊥α,b⊥α,则a∥b.写出所有正确命题的序号
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足
2x+y-2≥0
x-2y+4≥0
3x-y-3≤0
,则关于x2+y2的说法,正确的是(  )
A、有最小值1
B、有最小值
4
5
C、有最大值
13
D、有最小值
2
5
5

查看答案和解析>>

同步练习册答案