2£®ÖйúʯÓÍ»¯¹¤¼¯ÍŹ«Ë¾£¨sinopec£©Í¨¹ýÓë°²¸çÀ­¹ú¼ÒʯÓ͹«Ë¾ÉèÁ¢µÄºÏ×ʹ«Ë¾ºÏ×Ê£¬»ñµÃ°²¸çÀ­ÉÓÍÌï18Çø¿é£¬ÔÚijµØÇø³õ²½¿±Ì½Ê±ÆÚÒÑÁãÉ¢µØ×ê̽Á˿ھ®£¬È¡µÃÁ˵ØÖÊ×ÊÁÏ£®½øÈëϵͳ¿±Ì½Ê±ÆÚºó£¬ÒªÔÚÒ»¸öÇøÓòÄÚ°´×ݺáµÈ¾àµÄÍø¸ñµãÀ´²¼Öþ®Î»£¬½øÐÐÈ«Ãæ×ê̽£®ÓÉÓÚ×êÒ»¿Ú¾®µÄ·ÑÓúܸߣ¬Èç¹ûÐÂÉè¼ÆµÄ¾®Î»ÓëÔ­Óо®Î»ÖغϻòÏ൱½Ó½ü£¬±ã¿ÉÀûÓþɾ®µÄµØÖÊ×ÊÁÏ£¬²»±Ø´òÕâ¿Úо®£®Òò´Ë£¬×ê̽Ҫ×ñÑ­¾¡Á¿ÀûÓþɾ®£¬ÉÙ´òо®£¬ÒÔ½ÚÔ¼×ê̽·ÑÓ㮿±Ì½³õÆÚÊý¾Ý×ÊÁϼûÏÂ±í£º
£¨x£¬y£©£¨×ø±êµ¥Î»£ºkm£© 1£¨2£¬30£© 2£¨4£¬40£© 3£¨5£¬60£© 4£¨6£¬50£© 5£¨8£¬70£©6£¨1£¬y£© 
 ×ê̽Éî¶È£¨km£© 2 4 5 6 8 10
 ³öÓÍÁ¿£¨L£© 40 70 110 90 160205
ÔÚI£¨x£¬y£©ÖÐI´ú±í¾®ºÅ£¬x£¬y´ú±í¾®ËùÔÚÇø¿éµÄ×ø±ê£®
²Î¿´¹«Ê½b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=y-$\stackrel{¡Ä}{b}$x£®
£¨1£©Èô1¡«6ºÅ¾É¾®Î»ÖÃÂú×ãÏßÐÔ·Ö²¼£¬ÇëÀûÓÃǰ5×éÊý¾ÝÇó³ö»Ø¹éÖ±Ïß·½³Ì£¬²¢Çó³öyµÄÖµ£»
£¨2£©ÏÖ×¼±¸´òо®7£¨1£¬25£©£¬Èôͨ¹ý1¡¢3¡¢5¡¢7ºÅ¾®¼ÆËã³öµÄ$\stackrel{¡Ä}{b}$£¬$\stackrel{¡Ä}{a}$µÄÖµÓ루1£©ÖеÄb£¬cµÄÖµ²î²»³¬¹ý10%£¬ÔòʹÓÃλÖÃ×î½Ó½üµÄÒÑÓоɾ®6£¨1£¬y£©£¬·ñÔòÔÚÐÂλÖôò¾®£¬ÇëÅжϿɷñʹÓþɾ®£»
£¨3£©Éè³öÓÍÁ¿Óë×ê̽Éî¶ÈµÄ±ÈÖµk²»µÍÓÚ20µÄ¿±Ì½¾®³ÆÎªÓÅÖʾ®£¬ÄÇôÔÚÔ­ÓÐ6¿Ú¾®ÖÐÈÎÒ⿱²ì4¿Ú¾®£¬È¥¿±²ìÓÅÖʾ®ÊýXµÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£®

·ÖÎö £¨1£©ÀûÓÃǰ5×éÊý¾ÝµÃµ½$\overline{x}$£¬$\overline{y}$£¬ÓɻعéÖ±Ïß·½³Ì±Ø¹ýƽºâµã£¨$\overline{x}$£¬$\overline{y}$£©£¬ÄÜÇó³öy£®
£¨2£©·Ö±ðÇó³ö$\widehat{b}$£¬$\widehat{a}$£¬a£¬b£¬´Ó¶øµÃµ½$\frac{\widehat{b}-b}{b}¡Ö5%$£¬$\frac{\widehat{a}-a}{a}¡Ö8%$£¬¾ù²»³¬¹ý10%£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
£¨3£©ÓÉÌâÒ⿱²ìÓÅÖʾ®ÊýXµÄ¿ÉÄÜȡֵΪ2£¬3£¬4£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍEX£®

½â´ð ½â£º£¨1£©ÀûÓÃǰ5×éÊý¾ÝµÃµ½$\overline{x}$=$\frac{1}{5}$£¨2+4+5+6+8£©=5£¬$\overline{y}$=$\frac{1}{5}$£¨30+40+60+50+70£©=50£¬
¡ß»Ø¹éÖ±Ïß·½³Ì±Ø¹ýƽºâµã£¨$\overline{x}$£¬$\overline{y}$£©£¬
¡àa=$\overline{y}-b\overline{x}$=50-6.5¡Á5=17.5£¬
¡à»Ø¹éÖ±Ïß·½³ÌΪy=6.5x+17.5£¬
µ±x=1ʱ£¬y=6.5+17.5=24£¬
¡àyµÄÔ¤±¨ÖµÎª24£®
£¨2£©¡ß$\overline{x}=4£¬\overline{y}=46.25$£¬$\sum_{i=1}^{4}{{x}_{2i-1}}^{2}$=94£¬$\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}$=945£¬
¡à$\widehat{b}$=$\frac{\sum_{i=1}^{4}{x}_{2i-1}{y}_{2i-1}-4\overline{x}\overline{y}}{\sum_{i=1}^{4}{{x}_{2i-1}}^{2}-4{\overline{x}}^{2}}$$\frac{945-4¡Á4¡Á46.25}{94-4¡Á{4}^{2}}$¡Ö6.83£¬
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=46.25-6.83¡Á4=18.93£¬
¼´$\widehat{b}$=6.83£¬$\widehat{a}$=18.93£¬b=6.85£¬a=17.5£¬
$\frac{\widehat{b}-b}{b}¡Ö5%$£¬$\frac{\widehat{a}-a}{a}¡Ö8%$£¬¾ù²»³¬¹ý10%£¬
¡àʹÓÃλÖÃ×î½Ó½üµÄÒÑÓоɾ®6£¨1£¬24£©£®
£¨3£©ÓÉÌâÒ⣬1¡¢3¡¢5¡¢6Õâ4¿Ú¾®ÊÇÓÅÖʾ®£¬2£¬4ÕâÁ½¿Ú¾®ÊÇ·ÇÓÅÖʾ®£¬
¡à¿±²ìÓÅÖʾ®ÊýXµÄ¿ÉÄÜȡֵΪ2£¬3£¬4£¬
P£¨X=2£©=$\frac{{C}_{4}^{2}{C}_{2}^{2}}{{C}_{6}^{4}}$=$\frac{2}{5}$£¬
P£¨X=3£©=$\frac{{C}_{4}^{3}{C}_{2}^{1}}{{C}_{6}^{4}}$=$\frac{8}{15}$£¬
P£¨X=4£©=$\frac{{C}_{4}^{4}{C}_{2}^{0}}{{C}_{6}^{4}}$=$\frac{1}{15}$£¬
¡àXµÄ·Ö²¼ÁÐΪ£º

 X 2 3 4
 P $\frac{2}{5}$ $\frac{8}{15}$ $\frac{1}{15}$
EX=$2¡Á\frac{2}{5}+3¡Á\frac{8}{15}+4¡Á\frac{1}{15}$=$\frac{8}{3}$£®

µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³ÌµÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èôp£¬qÊÇÆæÊý£®Ôò·½³Ìx2+px+q=0²»¿ÉÄÜÓÐÕûÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®È·¶¨ÏÂÁи÷Èý½Çº¯ÊýÖµµÄÕý¸ººÅ£º
£¨1£©sin170¡ã£»
£¨2£©cos£¨-218¡ã£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÔÚÕý·½ÌåABCD-A1B1C1D1ÖУ¬E¡¢F·Ö±ðΪAB¡¢C1D1µÄÖе㣬ÔòA1B1ÓëÆ½ÃæA1EF¼Ð½ÇµÄÕýÏÒֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{6}}{2}$B£®$\frac{\sqrt{6}}{3}$C£®$\frac{\sqrt{6}}{4}$D£®$\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÉèÅ×ÎïÏßCµÄ·½³ÌΪx2=2py£¨p£¾0£©£¬¹ýµãM×÷Å×ÎïÏßCµÄÁ½ÌõÇÐÏßMA¡¢MB£¬Çеã·Ö±ðΪA¡¢B£¨AÓÒB×󣩣®
£¨1£©ÈôµãMµÄ×ø±êΪ£¨1£¬-1£©£¬Ò»¸öÇеãBµÄ×Ý×ø±êΪ$\frac{1}{2}$£¬ÇóÅ×ÎïÏßCµÄ·½³Ì£»
£¨2£©ÈôµãM£¨x0£¬y0£©ÎªÖ±Ïßl£ºy=-m£¨m£¾0£©ÉÏÈÎÒâÒ»µã£¬ÇóÖ¤£ºÖ±ÏßABºã¹ý¶¨µã£¨0£¬m£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÔÚijµØÕð¿¹Õð¾ÈÔÖÖУ¬Ä³Ò½Ôº´Ó10ÃûÒ½ÁÆ×¨¼ÒÖгéµ÷6Ãû±¼¸°êâÔÖǰÏߣ¬ÆäÖÐÕâ10Ãûר¼ÒÖÐÓÐ4ÃûÊǹǿÆ×¨¼Ò£®
£¨1£©³éµ÷µÄ6Ãûר¼ÒÖÐÇ¡ÓÐ2ÃûÊǹǿÆ×¨¼ÒµÄ³éµ÷·½·¨ÓжàÉÙÖÖ£¿
£¨2£©ÖÁÉÙÓÐ2Ãû¹Ç¿Æ×¨¼ÒµÄ³éµ÷·½·¨ÓжàÉÙÖÖ£¿
£¨3£©ÖÁ¶àÓÐ2Ãû¹Ç¿Æ×¨¼ÒµÄ³éµ÷·½·¨ÓжàÉÙÖÖ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Í¼ÖÐÒõÓ°²¿·ÖµÄÃæ»ýÓö¨»ý·Ö±íʾΪ£¨¡¡¡¡£©
A£®${¡Ò}_{0}^{1}$2xdxB£®${¡Ò}_{0}^{1}$£¨2x-1£©dxC£®${¡Ò}_{0}^{1}$£¨2x+1£©dxD£®${¡Ò}_{0}^{1}$£¨1-2x£©dx

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÈçͼËùʾ£¬ÔÚÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1ÖУ®
£¨1£©ÇóÖ¤£ºAC1¡ÍB1C£»
£¨2£©ÇóÖ¤£ºAC1¡ÍCB1D1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®µãPÊÇÍÖÔ²$\frac{x^2}{9}+\frac{y^2}{4}$=1ÉϵÄÒ»µã£¬F1¡¢F2·Ö±ðÊÇÍÖÔ²µÄ×óÓÒ½¹µã£¬Èô¡ÏF1PF2=60¡ã£¬Ôò|PF1||PF2|=$\frac{16}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸