精英家教网 > 高中数学 > 题目详情
16.设函数$f(x)={x^2}-\frac{1}{2}$,f'(x)是f(x)的导数,则函数g(x)=f'(x)cosx的部分图象可以为(  )
A.B.
C.D.

分析 求出f(x)的导数,求出g(x)的解析式,根据函数的奇偶性排除B,C,取x∈(0,$\frac{π}{2}$)时,得g(x)>0,求出答案即可.

解答 解:∵函数$f(x)={x^2}-\frac{1}{2}$,
∴f'(x)=2x,
则g(x)=2xcosx,
由g(-x)=-2xcos(-x)=-2xcosx=-g(x),
得g(x)是奇函数,
故选项B,C排除,
由x∈(0,$\frac{π}{2}$)时,g(x)>0,
故选:A.

点评 本题考查了函数的奇偶性问题,考查导数的应用以及转化思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数$f(x)=lnx+\frac{k}{x},k∈R$.
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调区间(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,摩天轮的半径为30m,圆心O点距地面的高度为35m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处,已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h.
(1)求在2017min时点P距离地面的高度;
(2)求证:不论t为何值时f(t)+f(t+1)+f(t+2)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+ax+3.
(1)当a=4时,求不等式f(x)≥0的解集;
(2)当x∈[2,5]时,f(x)≥a恒成立,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数$f(x)=\left\{\begin{array}{l}m+{x^2},|x|≥1\\ x,|x|<1\end{array}\right.$的图象过点(1,1),则函数f(x)的值域是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx(a为实数).
(1)当a=0时,求函数f(x)在区间[$\frac{1}{e}$,e]上的最大值和最小值;
(2)若对任意的x∈(1,+∞),g(x)=f(x)-2ax<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y={2^{{x^2}+2x}}$的值域为(  )
A.$[\frac{1}{2},+∞)$B.[2,+∞)C.$(0,\frac{1}{2}]$D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=lg(2-x-x2)的定义域为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若(2x2-3)n展开式中第3项的二项式系数为15,则n=6.

查看答案和解析>>

同步练习册答案