精英家教网 > 高中数学 > 题目详情
7.如图,摩天轮的半径为30m,圆心O点距地面的高度为35m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处,已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h.
(1)求在2017min时点P距离地面的高度;
(2)求证:不论t为何值时f(t)+f(t+1)+f(t+2)为定值.

分析 (1)求出f(t)的解析式,再计算f(2017);
(2)利用和差公式化简f(t),f(t+1),f(t+2)即可得出结论.

解答 解:(1)由题意可知f(t)的最小正周期T=$\frac{2π}{ω}$=3,∴ω=$\frac{2π}{3}$,
∵f(t)的最大值为65,最小值为5,
∴$\left\{\begin{array}{l}{A+h=65}\\{-A+h=5}\end{array}\right.$,∴$\left\{\begin{array}{l}{A=30}\\{h=35}\end{array}\right.$,
∵f(0)=5,30sinφ+35=5,解得sinφ=-1,
∴φ=-$\frac{π}{2}$.
∴f(t)=30sin($\frac{2π}{3}$t-$\frac{π}{2}$)+35.
∴f(2017)=f(1)=30sin$\frac{π}{6}$+35=50.
∴在2017min时,P点距离地面50米.
(2)由(1)知f(t)=30sin($\frac{2π}{3}$t-$\frac{π}{2}$)+35=-30cos$\frac{2π}{3}$t+35,
∴f(t+1)=30sin($\frac{2π}{3}t$+$\frac{π}{6}$)+35=15$\sqrt{3}$sin$\frac{2π}{3}$t+15cos$\frac{2π}{3}$+35,
f(t+2)=30sin($\frac{2π}{3}$t+$\frac{5π}{6}$)+35=-15$\sqrt{3}$sin$\frac{2π}{3}$t+15cos$\frac{2π}{3}$t+35,
∴f(t)+f(t+1)+f(t+2)=35×3=105.
∴不论t为何值时f(t)+f(t+1)+f(t+2)为定值105.

点评 本题考查了三角函数模型的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.用1,2,3,4四个数字组成无重复数字的四位数,其中比2000大的偶数共有(  )
A.16个B.12个C.9个D.8个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,从一气球上测得正前方河流的两岸B,C的俯角分别为60°,30°,此时气球的高是46m,则河流的宽度BC=$\frac{92\sqrt{3}}{3}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在R上的函数y=f(x)对任意的x、y∈R,满足条件:f(x+y)=f(x)+f(y)-1,且当x>0时,f(x)>1.
(1)求f(0)的值;
(2)证明:函数f(x)是R上的单调增函数;
(3)解关于t的不等式f(2t2-t)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.己知函数f(x)=x2-2mx+m-1(m∈R)的最小值是g(m),试求:
(1)函数y=g(m)的解析式;
(2)函数y=g(m)在m∈[0,2]时的最大值和最小值,以及相应的m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的首项a1=1,前n项和Sn满足an=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2)
(1)求证:$\left\{{\sqrt{S_n}\left.{\;}\right\}}$为等差数列,并求数列{an}的通项公式.
(2)是否存在实数λ,使得数列$\left\{{\frac{S_n}{{λ+{a_n}}}}\right\}$成等差数列?若存在,求出λ的值和该数列前n项的和;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.过点P(1,1)(且倾斜角为45°的直线被圆(x-2)2+(y-1)2=2所截的弦长是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数$f(x)={x^2}-\frac{1}{2}$,f'(x)是f(x)的导数,则函数g(x)=f'(x)cosx的部分图象可以为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.已知购买一张彩票中奖的概率为$\frac{1}{1000}$,则购买1000张这种彩票一定能中奖
B.互斥事件一定是对立事件
C.如图,直线l是变量x和y的线性回归方程,则变量x和y相关系数在-1到0之间
D.若样本x1,x2,…xn的方差是4,则x1-1,x2-1,…xn-1的方差是3

查看答案和解析>>

同步练习册答案