精英家教网 > 高中数学 > 题目详情
15.如图,从一气球上测得正前方河流的两岸B,C的俯角分别为60°,30°,此时气球的高是46m,则河流的宽度BC=$\frac{92\sqrt{3}}{3}$m.

分析 计算AB,根据等腰三角形性质得出BC.

解答 解:由题意可知AB=$\frac{46}{sin60°}$=$\frac{92\sqrt{3}}{3}$,∠ABC=120°,∠BAC=30°,
∴∠ACB=30°,
∴BC=AB=$\frac{92\sqrt{3}}{3}$.
故答案为:$\frac{92\sqrt{3}}{3}$

点评 本题考查了解三角形的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.关于函数f(x)=$\frac{2}{x}$+lnx,下列说法错误的是(  )
A.x=2是f(x)的极小值点
B.函数y=f(x)-x有且只有1个零点
C.存在正实数k,使得f(x)>kx恒成立
D.对任意两个不相等的正实数x1,x2,若f(x1)=f(x2),则x1+x2>4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线系方程为xcosφ+ysinφ=2,圆的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,(φ为参数),则直线与圆的位置关系为(  )
A.相交不过圆心B.相交且经过圆心C.相切D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数$f(x)=lnx+\frac{k}{x},k∈R$.
(1)若曲线y=f(x)在点(e,f(e))处的切线与直线x-2=0垂直,求f(x)的单调区间(其中e为自然对数的底数);
(2)若对任意x1>x2>0,f(x1)-f(x2)<x1-x2恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式(2x+1)(x-1)≤0的解集为(  )
A.$[{-\frac{1}{2},1}]$B.$[{-1,\frac{1}{2}}]$C.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$D.$({-∞,-1}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式kx2+kx-1≤0(k为实数)的解集为R,则直线kx+y-2=0的斜率的最大值等于(  )
A.2B.4C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C经过A(-1,1),且圆心坐标为C(1,1).
(1)求圆C的标准方程;
(2)设直线l经过点(2,2),且l与圆C相交所得的弦长为2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,摩天轮的半径为30m,圆心O点距地面的高度为35m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处,已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h.
(1)求在2017min时点P距离地面的高度;
(2)求证:不论t为何值时f(t)+f(t+1)+f(t+2)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y={2^{{x^2}+2x}}$的值域为(  )
A.$[\frac{1}{2},+∞)$B.[2,+∞)C.$(0,\frac{1}{2}]$D.(0,2]

查看答案和解析>>

同步练习册答案