精英家教网 > 高中数学 > 题目详情
2.己知函数f(x)=x2-2mx+m-1(m∈R)的最小值是g(m),试求:
(1)函数y=g(m)的解析式;
(2)函数y=g(m)在m∈[0,2]时的最大值和最小值,以及相应的m的值.

分析 (1)将f(x)配方,可得对称轴处取得最小值;
(2)将g(m)配方,求得对称轴,可得最大值,再求端点处的函数值,可得最小值.

解答 解:(1)函数f(x)=x2-2mx+m-1
=(x-m)2-m2+m-1,
当x=m时,可得f(x)的最小值为g(m)=-m2+m-1;
(2)g(m)=-m2+m-1=-(m-$\frac{1}{2}$)2-$\frac{3}{4}$,
当m=$\frac{1}{2}$时,g(m)取得最大值-$\frac{3}{4}$;
当m=0时,g(m)=-1;当m=2时,g(m)=-3.
则m=2时,g(m)取得最小值-3.

点评 本题考查二次函数的最值的求法,注意运用配方法,以及对称轴和区间的关系,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列说法正确的是(  )
A.“p∨q”是“p∧q”的充分不必要条件
B.样本10,6,8,5,6的标准差是3.3
C.K2是用来判断两个分类变量是否相关的随机变量,当K2的值很小时可以推定两类变量不相关
D.设有一个回归直线方程为$\widehat{y}$=2-1.5x,则变量x每增加一个单位,$\widehat{y}$平均减少1.5个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式(2x+1)(x-1)≤0的解集为(  )
A.$[{-\frac{1}{2},1}]$B.$[{-1,\frac{1}{2}}]$C.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$D.$({-∞,-1}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C经过A(-1,1),且圆心坐标为C(1,1).
(1)求圆C的标准方程;
(2)设直线l经过点(2,2),且l与圆C相交所得的弦长为2$\sqrt{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是某工厂对甲乙两个车间各10名工人生产的合格产品的统计结果的茎叶图.设甲、乙的中位数分别为x、x,甲、乙的方差分别为s2、s2,则(  )
A.x<x,s2<s2B.x>x,s2>s2
C.x>x,s2<s2D.x<x,s2>s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,摩天轮的半径为30m,圆心O点距地面的高度为35m,摩天轮做匀速转动,每3min转一圈,摩天轮上的点P的起始位置在最低点处,已知在时刻t(min)时点P距离地面的高度f(t)=Asin(ωt+φ)+h.
(1)求在2017min时点P距离地面的高度;
(2)求证:不论t为何值时f(t)+f(t+1)+f(t+2)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=lnx-ax,若函数在定义域上有且仅有4个零点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数$f(x)=\left\{\begin{array}{l}m+{x^2},|x|≥1\\ x,|x|<1\end{array}\right.$的图象过点(1,1),则函数f(x)的值域是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点M为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上的点,则M到直线x+2y-10=0的距离的最小值是(  )
A.$\frac{7\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\sqrt{5}$D.2

查看答案和解析>>

同步练习册答案