分析 作出y=lnx与y=ax的函数图象,利用导数的几何意义得出a的临界值,从而得出a的范围.
解答 解:∵f(x)是偶函数,且f(x)有4个零点,
∴f(x)在(0,+∞)上有2个零点,
∴y=lnx与y=ax有2个交点,
作出y=lnx与y=ax的函数图象如图所示:![]()
设y=ax与y=lnx相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{{y}_{0}=a{x}_{0}}\\{{y}_{0}=ln{x}_{0}}\\{\frac{1}{{x}_{0}}=a}\end{array}\right.$,解得x0=e,y0=1,a=$\frac{1}{e}$.
∴当0$<a<\frac{1}{e}$时,直线y=ax与y=lnx在(0,+∞)上有2个交点,
故答案为(0,$\frac{1}{e}$).
点评 本题考查了函数零点与函数图象的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | f(x1)<0,f(x2)<0 | B. | f(x1)>0,f(x2)>0 | C. | f(x1)<0,f(x2)>0 | D. | f(x1)>0,f(x2)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{9\sqrt{3}}{2}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{9}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com