精英家教网 > 高中数学 > 题目详情
3.已知直线l的方程为3x+4y-12=0.
(1)直线l1经过点P(1,0),且满足l1∥l,求直线l1的方程;
(2)设直线l与两坐标轴交于A、B两点,O为原点,求△OAB外接圆的方程.

分析 (1)设所求直线l1方程为3x+4y+m=0,由直线l1经过点P(1,0),求出m=-3,由此能求出直线l1的方程.
(2)求出A(4,0),B(0,3),△OAB外接圆即以AB为直径的圆,圆心为$C(2,\frac{3}{2})$,半径为r=$\frac{1}{2}$|AB|,由此能求出△OAB外接圆的方程.

解答 解:(1)∵直线l的方程为3x+4y-12=0.
直线l1经过点P(1,0),且满足l1∥l,
∴设所求直线l1方程为3x+4y+m=0,
由已知3×1+m=0,m=-3,
∴直线l1的方程为3x+4y-3=0;…6分
(2)令y=0,得x=4,令x=0,得y=3,则A(4,0),B(0,3),…8分
△OAB外接圆即以AB为直径的圆,圆心为$C(2,\frac{3}{2})$,
半径为$r=\frac{1}{2}|{AB}|=\frac{1}{2}\sqrt{{3^2}+{4^2}}=\frac{5}{2}$,
则△OAB外接圆的方程为${(x-2)^2}+{(y-\frac{3}{2})^2}={(\frac{5}{2})^2}$.…12分

点评 本题考查直线方程的求法,考查圆的方程的求法,考查圆、直线方程、点到直线距离公式、两点间距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.不等式(2x+1)(x-1)≤0的解集为(  )
A.$[{-\frac{1}{2},1}]$B.$[{-1,\frac{1}{2}}]$C.$({-∞,-\frac{1}{2}}]∪[{1,+∞})$D.$({-∞,-1}]∪[{\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=lnx-ax,若函数在定义域上有且仅有4个零点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数$f(x)=\left\{\begin{array}{l}m+{x^2},|x|≥1\\ x,|x|<1\end{array}\right.$的图象过点(1,1),则函数f(x)的值域是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,已知圆C的圆心在x正半轴上,半径为2,且与直线x-$\sqrt{3}$y+2=0相切
(1)求圆C的方程
(2)在圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数$y={2^{{x^2}+2x}}$的值域为(  )
A.$[\frac{1}{2},+∞)$B.[2,+∞)C.$(0,\frac{1}{2}]$D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l:mx-y-m+2=0与圆C:x2+y2+4x-4=0交于A,B两点,若△ABC为直角三角形,则m=0或$\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知点M为椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上的点,则M到直线x+2y-10=0的距离的最小值是(  )
A.$\frac{7\sqrt{5}}{5}$B.$\frac{6\sqrt{5}}{5}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(1,5),则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案